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Abstract. This paper introduces focusedDFT, a novel Discrete Fourier 
Transform (DFT) implementation optimized for short signals with low 
frequency components, particularly where a single frequency component 
is of interest. The results suggest focusedDFT as a viable and efficient 
solution for vibration-based damage detection methods, offering im-
proved execution times compared to traditional DFT approaches. 
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1. Introduction  

Detecting structural defects and cracks is crucial in mechanical engineering, 
impacting safety, reliability, and the longevity of structures. Damage from stress, 
fatigue, environmental factors, material flaws, or vibrations can lead to serious fail-
ures, making early detection essential. Vibration-based damage detection has emerged 
as a valuable non-destructive method, leveraging a structure's dynamic response to 
identify potential defects. Vibration-based damage detection involves analyzing 
changes in natural frequencies, typically by recording vibrations with sensors and 
extracting frequency components using Fourier transforms. The Discrete Fourier 
Transform (DFT) converts signals from the time domain to the frequency domain, 
which allows engineers to pinpoint frequency components that may indicate struc-
tural damage. However, precise frequency detection is challenging due to the dis-
crete nature of digital computation. 

One way to improve precision is to adjust the signal length by cropping or pad-
ding, which changes the frequency bin resolution and moves the bins closer to the 
actual monitored frequency. This approach can reduce spectral leakage and increase 
spectral amplitudes, as signal energy is less dispersed to neighboring bins. Methods 
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based on this idea iteratively recalculate the DFT for various signal lengths. A draw-
back of standard Fast Fourier Transform (FFT) implementations in this case is that 
they often split the signal into chunks of specific lengths, typically powers of two, in 
order to improve the efficiency, which can introduce unwanted effects like spectral 
leakage and interfere with intended signal length manipulation. 

In vibration-based damage detection, high precision is required, and it often in-
volves short signals with low frequency components and non-integer number of pe-
riods. A “clean” DFT algorithm is preferred in this case as it doesn’t interfere with 
signal length manipulation. The challenge with DFT is its order of complexity which 
can be slow when used in iterative signal length manipulation. 

This paper introduces focusedDFT, a DFT implementation suited for processing 
short signals with low frequency components, targeting a single frequency component. 
This implementation processes only a specified range of frequency bins around the 
targeted frequency, offering execution times practical for the intended application.  

The paper is organized as follows: Section 2 discusses background information 
and related work. Section 3 introduces the algorithm implementation and helper 
functions in Python. Section 4 presents the results of testing the helper functions and 
implemented DFT algorithm output, comparing execution times to NumPy's FFT. 
Section 5 discusses the results and the potential for focusedDFT use in methods for 
improving DFT precision. 

2. Background and Related Work 

Vibration-based structural damage detection requires precise analysis of acquired 
signals, as damage is detected by noticing changes in the natural frequencies of the 
structure. In these cases, signals are often short and contain low-frequency compo-
nents, typically below 100 Hz [1]. The discrete nature of the Discrete Fourier Trans-
form (DFT) results in a set of discrete frequency bins, where the exact frequency 
may not be captured, causing the signal's energy to be spread to neighboring bins, 
leading to spectral leakage. Various interpolation methods can mitigate this issue to 
some extent. However, these methods may produce poor results when low-frequency 
components are close and neighboring bins overlap. One possible approach involves 
gradually changing the signal length by cropping or padding to adjust the frequency 
bin resolution, moving frequency bins closer to the actual frequency of the targeted 
component [1-4]. Standard Fast Fourier Transform (FFT) implementations enhance 
efficiency by chunking the signal into lengths that are powers of two, but this can 
interfere with the aforementioned approach [5], The DFT's complexity is generally 
acceptable for processing short signals, but it becomes problematic with iterative 
signal length manipulation as execution time increases. 
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Focusing on the frequency range of interest can reduce the number of iterations 
and provide a faster DFT implementation without compromising precision. This pa-
per introduces focusedDFT, a targeted approach to processing short signals with 
low-frequency components efficiently and accurately.  

3. Discrete Fourier Transform 

Discrete Fourier transform formula is: 

 𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛𝑒𝑒
−𝑖𝑖2𝜋𝜋𝑘𝑘𝑁𝑁𝑛𝑛𝑁𝑁−1

𝑛𝑛=0   (1) 

where N represents number of samples in the signal and Xk represents the value of k-
th frequency bin in signal spectrum. This sum can be implemented as a for loop 
which n over the range [0, N-1] for each k frequency bin. The part 2𝜋𝜋

𝑁𝑁
 can be extracted 

into variable D, which is calculated before the loop, to save on total execution time, 
as defined in formula 2:  

 𝐷𝐷 = 2𝜋𝜋
𝑁𝑁

 (2) 

By applying the Euler’s formula (3) eix can be replaced with sum of sines and 
cosines. This improves the DFT implementation in two ways: sinus and cosines in 
Python are using native C functions which use precalculated tables, which should be 
faster than calculating the power of e, and imaginary and real part are separate so there 
is no need to introduce additional libraries or helper functions to deal with that part.  

 𝑒𝑒𝑖𝑖𝑖𝑖 = cos(𝑥𝑥) +  𝑖𝑖sin(𝑥𝑥) (3) 

After applying formulas 2 and 3 into formula 1 we get the following expression:  

 𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛 ∙ cos(−𝑘𝑘𝑘𝑘𝐷𝐷) + 𝑖𝑖𝑥𝑥𝑛𝑛 ∙ sin(−𝑘𝑘𝑘𝑘𝐷𝐷)𝑁𝑁−1
𝑛𝑛=0   (4) 

which can be further simplified by identities:  

cos(−𝛼𝛼) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) 

 sin(−𝛼𝛼) = −𝑐𝑐𝑖𝑖𝑘𝑘(𝛼𝛼) (5) 

which brings the following formula:  

 𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛 ∙ cos(𝑘𝑘𝑘𝑘𝐷𝐷) − 𝑖𝑖𝑥𝑥𝑛𝑛 ∙ sin(𝑘𝑘𝑘𝑘𝐷𝐷)𝑁𝑁−1
𝑛𝑛=0   (6) 

Xk values are complex numbers and need to be converted to real numbers to form 
the signal spectrum. As each Xk contains real and imaginary part, which are on 
their respective axes, Euclidean distance of the (Re,Im) coordinate from x 
axis is calculated and used for signal spectra. If formula 6 is represented as 
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sum of Real and Imaginary parts, as shown in formula 7, k-th frequency bin 
value is calculated per formula 8.  

 𝑋𝑋𝑘𝑘 = ∑ (𝑅𝑅𝑒𝑒 − 𝐼𝐼𝐼𝐼)𝑁𝑁−1
𝑛𝑛=0 =  ∑ 𝑅𝑅𝑒𝑒 𝑁𝑁−1

𝑛𝑛=0 − ∑ 𝐼𝐼𝐼𝐼 𝑁𝑁−1
𝑛𝑛=0 = 𝑆𝑆𝑅𝑅𝑒𝑒 − 𝑆𝑆𝐼𝐼𝐼𝐼   (7) 

 𝑋𝑋′𝑘𝑘 = √𝑆𝑆𝑅𝑅𝑒𝑒2 + 𝑆𝑆𝐼𝐼𝐼𝐼2  (8) 

This can be implemented as a double for loop which iterates k over the range 
[0, length(signal)) and for each k iterates n over the range [0, N-1]. As we are concerned 
about only a specific range of frequency bins around the targeted frequency, outer loop 
can iterate over that range only, which is a basis for the FocusedDFT. 

4. Methodology and materials 

The FocusedDFT was implemented as a function focused_dft in Python. To test 
the function, we created a test script, and a helper function called generateSignal to 
generate sinusoidal signals with desired frequency components, amplitudes, and phase 
shifts for a given sampling rate. This function generates an array of double-type values. 

FocusedDFT was designed to calculate the DFT in a straightforward manner, 
looping through the signal with two nested loops to compute the spectrum. This func-
tion returns an array of double-type values representing the spectrum. To save on com-
putation time, the function supports limiting the frequency range for calculation. For 
iterative signal length manipulation, the function also supports signal padding and 
cropping for the desired number of samples from the start or end of the signal array. 

We used the standard FFT function from the numpy package, numpy.fft.fft, to 
test the correctness of the implemented function. An experiment was designed to 
generate simple and complex sinusoids, calculate the DFT and FFT of these gener-
ated signals, and compare the resulting spectra. Execution time of focused_dft and 
numpy.fft.fft was compared for short and long signals, both for signals whose lengths 
are powers of 2, which are typically suitable for FFT, and for slightly different lengths. 
Below is the description of each segment of the experiment. Section 4 provides the re-
sults. 

4.1. Signal generation function 

The signal generation function creates a sinusoid with specified frequency compo-
nents, phase offsets, amplitudes, sample rate, and duration in seconds. The function sig-
nature is: 

generateSignal(frequencyComponents, phaseOffsets, amplitudes, 
sample_rate, duration) 
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The return value is an array of double values with sample_rate * duration ele-
ments. The function returns an array of double values with sample_rate * duration 
elements. It starts with an array of zeros and iterates through each frequency compo-
nent, adding the appropriate value to the corresponding index based on the given 
parameters. Below is the Python implementation of the function: 

Code Listing 1: Function for Signal Generation 
def generateSignal(frequencyComponents, phaseOffsets, amplitudes, 

 sample_rate, duration): 
  numSamples = sample_rate * duration 
  signal = [0] * numSamples 
  sampleX = [i/sample_rate for i in range(sample_rate * duration)] 
  for i in range(0,len(frequencyComponents)): 
    for j in range(0,numSamples): 

  signal[j] += amplitudes[i] 
* math.sin(2*math.pi*frequencyComponents[i]*sampleX[j]

+ phaseOffsets[i] )
  return signal 

The function was tested by generating sinusoidal signals with integer and non-
integer numbers of periods, featuring 1, 2, and 3 frequency components, with and 
without phase shifts. Table 1 lists all the parameters, and Figure 1 shows the gener-
ated signals. The sample rate is 10,000 samples/sec in all cases. 

Table 1. Results for DFT and FFT 

 Signal Duration 
(sec) 

No. of 
periods 

Frequency 
components 

Amplitudes Phases 

I1 1 Integer 10 1 0 
I2 1 Integer 10 1 π 
I3 1 Integer 10, 50 5, 1 0, 0 
I4 1 Integer 10, 50 5, 1 π, π /2 
I5 1 Integer 5, 10, 50 1, 5, 2 0, π, π /2 
N1 1.03 Non-integer 10 1 0 
N2 1.03 Non-integer 10 1 π 
N3 1.03 Non-integer 10, 50 5, 1 0, 0 
N4 1.03 Non-integer 10, 50 5, 1 π, π /2 
N5 1.03 Non-integer 5, 10, 50 1, 5, 2 0, π, π /2 
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Figure 1. Output of generateSignal() function 

 

4.2. DFT function 

The experiment used two functions for computing Fourier Transforms: a cus-
tom DFT implementation and the standard FFT from the numpy package. The DFT 
function has the following signature: 

focused_dft(signal, freq_from=None, freq_to=None, sample_rate=None, 
            left_padding=0, right_padding=0) 

The parameters include: the signal (an array of double values), an optional fre-
quency range to calculate the DFT (to accelerate computation when interested in a 
specific spectral component), the sample rate (needed when frequency range is pro-
vided), and optional sample counts to add to the beginning or end of the signal (left 
and right padding). The return value is an array of double values representing the left 
half of the spectrum, as DFT generates a symmetric spectrum. 

Figure 2 shows the spectra obtained from the FocusedDFT and FFT functions 
for generated signals noted in Table 1, zoomed in on the parts with frequency com-
ponents. FocusedDFT was used without focusing on a specific frequency to obtain a 
full spectrum. It is evident that both FocusedDFT and FFT produce the same spectra, 
detecting the same frequency components as expected from the generated signals.  
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Figure 2. DFT and FFT spectra of generated signals 

 
To test the FocusedDFT with focus on a specific range of frequencies, spectra 

of DFT and FocusedDFT for range [8.5, 11.5] Hz was calculated over the generated 
signals noted in Table 1. The resulting spectra, zoomed in on the parts where frequency 
components are present, are shown in Figure 3. It can be seen that FocusedDFT pro-
duces accurate spectra with only 10Hz component, ignoring the rest of the frequency 
bins, as intended. 

 

 
Figure 3. FocusedDFT and DFT spectra of generated signals 
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The DFT function implementation includes logic for signal padding and cropping 
based on the provided parameters. It then uses two nested loops to calculate the real 
and imaginary components, which are combined using Euclidean distance to produce 
the resulting spectrum, as derived in formula 8. The core of the code for the DFT 
function is shown in Code Listing 2. 

 
Code listing 2. FocusedDFT function 
 
def focused_dft(signal_original, freq_from=None, freq_to=None,  

     sample_rate=None, left_padding=0, right_padding=0): 
  # left and right signal padding and cropping ... 
  # dft 
  Xreal = numpy.zeros(N) 
  Ximag = numpy.zeros(N) 
  X = numpy.zeros(N) 
  for k in range(k_range_from, k_range_to):         
    for n in range(0, N): 
      Xreal[k] = Xreal[k] + signal[n]*math.cos(k*n*2*math.pi/N) 
      Ximag[k] = Ximag[k] - signal[n]*math.sin(k*n*2*math.pi/N) 
    X[k] = math.sqrt( Xreal[k]**2 + Ximag[k]**2 ) 
  return X 

 
To generate the frequency array (x-axis) for the frequency bins, a function 

called frequencyBins was implemented, which calculates these values based on the 
length of the spectrum array and the sample rate. The function is provided in Code 
Listing 3. 

 
Code Listing 3: Frequency Bins Function  
 
def frequencyBins(dft_spectrum, sample_rate): 
  N = len(dft_spectrum) 
  frequencyResolution = sample_rate / N 
  frequencyBins = [ i * frequencyResolution for i in range(N) ] 
  return frequencyBins 
 

4.3. Execution time 

To measure and compare the execution time, FocusedDFT and FFT were exe-
cuted over 4 generated signals: a short signal, simulating the expected case in vibra-
tion-based damage detection; a long signal, for comprehensive measurement; a signal  
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whose length is a power of 2, which is supposedly suitable for FFT; and a signal whose 
length is a slightly different from the previous one, which should be unsuitable for FFT 
but indifferent for FocusedDFT. The generated signals are listed in Table 2.  

 
Table 2. Test signals 

Signal Sample 
rate 

Length 
(sec) 

Frequency 
components 

Amplitudes Phases 

S1 - Short 1000 1 10, 50 5, 1 1, 2 
S2 - Long 22000 1 10, 50 5, 1 1, 2 

S3 - FFT suitable 1024 1 10, 50 5, 1 1, 2 
S4 - FFT unsuitable 1027 1 10, 50 5, 1 1, 2 

5. Results 

In the experiment, 4 signals were generated, followed by applying the DFT over 
entire spectrum, FocusedDFT around the target component of 10Hz, and FFT.  
Experiment was run on Intel i5-1035G1 CPU, on Windows 10. To avoid possible 
increase in execution time due to randomly activated background processes, each 
test was executed 4 times. Measured execution times and calculated average times 
are listed in Table 3.  

 

Table 3. Execution times in ms 

DFT 
type Signal Test 1 Test 2 Test 3 Test 4 Rounded 

average 

DFT 

S1 380419.7 376956.7 370383.1 366535.3 373573 
S2 169263715.6 172438375.3 171855072.3 172453596.9 171502690 
S3 378081.9 380420.5 378003.3 377855.1 378590 
S4 379929.9 377849.8 387159.4 385697.9 382659 

Focused 
DFT 

S1 2950.9 3111.1 2905.2 2986.2 2988 
S2 56586.3 54741.4 59146.4 58865.2 57335 
S3 2561.9 3020.4 2321.4 2268 2543 
S4 3034.4 2442.3 3016.0 2762.7 2814 

FFT 

S1 188.2 142.4 149.7 143.9 156 
S2 2768.6 2229 2379.5 3081.8 2615 
S3 104.4 75 90.1 107.1 94 
S4 135.5 92.9 141.5 150.9 130 
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As expected, execution time for DFT is significantly longer then Focused DFT 
and FFT. In case of S3-signal with 1024 samples, which should be suitable for FFT, 
and S4-signal with 1027 samples, which should be unsuitable for FFT, it is visible 
that DFT execution time proportionally increases, which is not the case with FFT.  

6. Discussion 

The implemented DFT produces accurate results, aligning closely with the Fast 
Fourier Transform (FFT) in identifying frequency components, as depicted in figures 
2 and 3. Table 3 illustrates that the Focused DFT is approximately 20 times slower 
than FFT for signals containing 1000 samples. 

The primary application for the Focused DFT lies in vibration-based damage 
detection methods, which prioritize precision in identifying specific frequency com-
ponents. These methods manipulate signal length to refine frequency binning, a process 
where FFT implementations often fall short due to inherent signal chunking. By adjust-
ing the signal length to accommodate an integer number of periods of the targeted 
frequency, precision is optimized. For instance, for a 10Hz signal, adjustments up to 
1/10th of the original length may be necessary, requiring several hundred iterations 
and potential DFT recalculations. However, experiments demonstrate that executing 
Focused DFT for a 1000-sample signal takes approximately 3ms, allowing for 300 
iterations per second. With a total execution time of several seconds, the Focused 
DFT emerges as a viable solution in this context 

7. Conclusion 

Vibration-based damage detection is a popular non-intrusive approach which 
heavily relies on precise signal processing. DFT is an important part of this process. 
Small frequency changes are important and need to be captured. The discrete nature 
of computer systems and data acquisition poses challenges to precision, particularly 
regarding frequency bin resolution. While spectral interpolation may seem like a  
solution, in some specific cases it falls short in practice. Manipulating signal length 
to align with frequency bin resolution proves to be a successful strategy, albeit one 
that demands multiple DFT calculations across varying signal lengths. FFT imple-
mentations in this case fail to provide good results due to inherent signal chunking. 
Traditional DFT implementation is slow and total execution time can be problematic. 

In the case of vibration-based damage detection FFT can be used for an initial 
processing of the acquired signal to get the quick insight of the spectra and spectral 
components present. The engineer can then focus on a specific frequency component 
and direct the algorithm to provide the precise frequency within that focused frequency 
range, by manipulating the signal length and frequency bin resolution. FocusedDFT  
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execution time is acceptable, it doesn’t suffer from long execution time like DFT 
does and doesn’t interfere with signal length as FFT does. FocusedDFT can be used 
as a viable alternative in such methods. 

Future research efforts could be directed to employ FocusedDFT in PyFEST 
and similar methods in order to improve their execution time without compromising 
the precision.  
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