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Dynamic behavior of a simply supported circular plate
Ionela Harea'™, Zeno-losif Praisach*

Abstract. The paper presents a study regarding the dynamics behavior
of thin circular plate simply supported with a relation obtained analytically
and the graphic representation of the modal shapes. The modal shapes
are obtained using Bessel functions and their graphic representation are
compared with Finite Element Method (FEM) by using modal analysis.
For the analyzed case, the first 70 eigenvalues and natural frequencies are
calculated.
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1. Introduction

Thin plates are used in architecture, civil construction design, industrial plant and
machinery, oil platforms, hydraulic structures, aerospace and mechanical engineering.

Study of plates and dynamic behavior has been of scientific interest since the
18th century. The first researchers to offer mathematical approaches to plate and free
vibration analysis were L. Euler [1], J. Bernoulli [2], E. Chladni, C.L. Navier, G.R.
Kirchhoff, Ventsel and Krauthammer [3], S.P. Timoshenko [4], J.V. Boussinesq,
S.G. Lekhnitskii, A. Leissa [5].

The problem of vibration analysis was analyzed using different numerical meth-
ods: Boundary element method [6], Finite element method [7, 8], Finite difference
method.

The paper is focused on the analytical approach by using Bessel function solu-
tion and the comparison with the numerical results of the dynamic behavior for a
simply supported circular plate. The considered plate is homogeneous, of constant
thickness and is subject to the action of its dead weight.

The frequency equation is deduced from which the first 70 eigenvalues and nat-
ural frequencies were calculated, the modal functions are presented and illustrated
using the Excel software and compared with the modal shapes obtained from Solid-
Works software.
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2. Analytical approach

The origin 0 of a thin circular plate, in polar coordinates is defined by the radius
r=a=0.4 m and the angle 0 (fig. 1). The plate is made of structural steel with constant
thickness h=0.002 m and having the modulus of elasticity E=2.1-10"' N/m?, Poisson
coefficient v=0.28 and density p=7800 kg/m’.

Figure 1. Simply supported circular plate defined by polar coordinates.

The flexural rigidity of the considered circular has the value:

_ ER®
T 12(1-v2)

=151.91 Nm (1)

To obtain the analytical solution of the dynamic behavior of the simply sup-
ported circular plate, it starts from the general solution [5] of the equation in polar
coordinates:

W(r,0) = Yo—olAdn(kr) + B, Y, (kr) + C,1,(kr) + D, K, (kr)] cos(n@) + 5
{ + 3% AT () + By Y, (kr) + Cy 'L (k) + Dy K, (k)] sin(ng) )

where,
1, 0 are polar coordinates;
a [m] is the circular plate radius;
h [m] is the thickness of the plate;
E [N/m?] is the Young’s modulus;
v is the Poisson coefficient;
n=0, 1, ..., oo is the number of nodal diameters, or the order of the Bessel function;

4[pw? . .
k = —,~ Is a parameter of convenience.
Ja(k1), Ya(k'1) are the Bessel functions of the first and second kind;
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In(k-1), Ko(k 1) are the modified Bessel functions of the first and second kind;

An, B, Cn, Dy, An', Br', Co', Dy are coefficients that are obtained from boundary
conditions.

The considered circular plate does not have a central hole and to avoid defor-
mations and infinite stresses at r=0, the terms Yn(kr) and K,(kr) are not taken into
account [5].

In addition, the boundary conditions present symmetry in relation to one or
more diameters of the simply supported circular plate and in this case the terms in-
volving the term sin(nB) are not necessary.

The general solution of the equation in polar coordinates (2) becomes:

W(r,0) = [ApJ,(kr) + C,1,(kr)]cos(nB) 3)
The boundary condition for the simply supported plate are:

W(@) = 0= (AnD) + Culu(D]ecos(n6) = G, = —, 22

% =0=24, [(]"n(/l) + %]'n(l)) - ZZ% (1"11(1) + %1',1(/1))] cos(nB)
4)

where, A=k-a is the eigenvalue.
By using the recurrence relations [9]:

{J'n(A) = ~Jn+1(D) +n§1n A = o) —nﬁfn ey -
I'n@) = Ingy D) + 21 (D) = Ly (D) =21, (D)
and
Jnrz@) = 2@+ Dpys D = Jn (D)
Itz = =200 + Dl D) + [, (D) ©
it will be obtained:
T @) = (% = 1) Jn@) + 21 o
@) = (5 +1) L) = sy )
which replaced in the second relationship (4) give us the frequency equation:
Jna1(Ans) | Int1(Fns) _ 2 @®

]n(/ln,s) In(’ln,s) B 1-v
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The solutions of the frequency equation (8) give us the eigenvalues Ans. It can
be observed that in the case of the circular plate simply supported, the frequency
equation takes into account Poisson's ratio v.

The normalized mode shape function can be written as:

wW(r, e)n,s =4, []n (An,svz) - MI (An,s: %)] cos(né)

a In(Ans) ™ ©)
In(An, .
W(r,0),s =4, []n (An,s, 2) - %In ()ln,s,g)] sin(nf)
and the natural frequencies are expressed with relationship:
Ans® [ D
fn,s = # oh (10)

where,
s is the number of nodal circles;
Ans 18 the eigenvalue as a function of n and s.

3. Modal analysis by using FEM

The modal analysis used for Finite Element Method (FEM) simulation was per-
formed using the SolidWorks software. The boundary conditions applied to the 3D
circular plate model for simply supported conditions are presented in figure 2.

The dimensions of the elements (mesh) and the details provided by SolidWorks
can be seen in figure 3. The dimensions of the circular plate and the physical char-
acteristics and mechanical properties are the same as presented in Chapter 2.

On Cylindrical Faces:

Circumferential (rad):| 0

Axial (mm): 0

Figure 2. Boundary condition for simply supported circular plate.

67



Mesh Details

Stuclhy name Freguency 1 -Default-)
Detailskesh tvpe Solid kMesh

tMesher Used Blended curvature-based mesh
Jacobian paoints for High gquality mesh |16 points

Max Element Size 5.03826 mm

kin Element Size 5.03826 mm

esh guality High

Total nodes 310301

Total elements 154445

MMaximum Aspect Ratio 5.9104

Pgrcentage of e_lements 39.3

with Aspect Ratio < 3 .

Fercentage of elements 0

with Aspect Ratio > 10

Fercentage of distorted elements u]

Mumber of distorted elements u]

Time to complete meshihhimm:ss) 00:00:05

Computer name

Figure 3. Mesh details.
4. Results
The eigenvalues Ans depending on the number of nodal diameters n, respec-
tively the number of nodal circles s, solutions of relation (8), calculated for 70 vibra-
tion modes are presented in the table 1 and the natural frequencies calculated with

relation (10) are shown in table 2.

Table 1. Eigenvalues Ans.

s Nodal diameters n
0 1 2 3 4 5 6

0 2.215 3.725 5.059 6.319 7.538 8.728 9.898
1 5.449 6.961 8.372 9.723 | 11.031 12.308 13.562
2 8.610 10.137 11.588 12.987 | 14.347 15.677 16.982
3 11.760 13.296 14.771 16.201 | 17.595 18.961 20.303
4 14.906 16.448 17.939 19.390 | 20.809 22.201 23.571
5 18.051 19.597 21.100 22.567 | 24.004 25.416 26.807
6 21.194 22.744 24.255 25.734 | 27.186 28.614 30.022
7 24.337 25.890 27.407 28.896 | 30.359 31.800 33.222
8 27.480 29.034 30.557 32.053 | 33.526 34.978 36.412
9 30.623 32.178 33.706 35.208 | 36.689 38.150 39.594
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Table 2. Natural frequencies f, s [Hz].

s Nodal diameters n
0 1 2 3 4 5 6

0 15.23 43.06 79.43 123.96 176.37 236.47 304.11
1 92.18 150.41 217.58 293.42 377.71 470.26 570.92
2 230.12 318.95 416.80 523.51 638.91 762.85 895.19
3 429.28 548.74 677.25 814.70 960.98 | 111594 | 1279.50
4 689.70 839.79 998.95 | 1167.10 | 1344.15 | 1529.99 | 1724.53
5| 101139 | 1192.11 | 138191 | 1580.74 | 1788.51 | 2005.14 | 2230.55
6| 139435 | 1605.70 | 1826.14 | 2055.63 | 2294.09 | 2541.46 | 2797.68
7| 1838.57 | 2080.56 | 2331.64 | 2591.78 | 2860.92 | 3139.01 | 3425.98
& | 2344.07 | 2616.69 | 2898.41 | 3189.20 | 3489.00 | 3797.78 | 4115.48
9| 2910.84 | 3214.09 | 3526.45 | 3847.88 | 4178.35 | 4517.81 | 4866.21

The Ans values were obtained by iterative calculation. For example, for n=0, the
first s=0, ..., 9 solutions of the frequency equation (8) resulted, respectively the val-
ues: Ao, ...., Moo, after which the number of n was increased from 1 to 6.

In the numerical modal analysis, the first 30 natural frequencies and vibration
modes were obtained and they are shown in figure 4.

The natural frequencies obtained from FEM analysis, with identical values that
appear at different vibration modes in figure 4, are due to the terms cos and sin from
the analytically derived modal function (9). The natural frequency deviations (gns)
obtained by the two calculation methods are very small and can be seen in table 3.

Table 3. Natural frequencies deviations &ns = frem/fos — 1 [%0].

s Nodal diameters n
0 1 2 3 4 5 6
0| -0.0197 0.0046 | -0.0013 0.0081 | -0.0113 | -0.0127 | -0.0164
1 -0.0011 0.0000 | -0.0094 | -0.0102 | -0.0132
2| -0.0043 | -0.0094 | -0.0096
3] -0.0093
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Study name:Frequency 1

Mode NDJ Frequency(Radisec) | Frsquancy(Hartz)] FPeriod(Seconds)
1} 95.675 15227 0.065672
2 270.57 43.062 ooz3izzz
3 270.57 43.062 n.oz3z2z2
< <499 07 79.429 0012549
5 493.07 79.4z29 0.012539
3] 579.18 g9z1739 0010848
7 77881 123.9%5 00080677
a8 778.81 12395 00080677
9 945.03 150.41 0.0066486
10 945.03 150491 00066436
11 1.108.1 176.35 00056704
12 1.108.1 176.35 00056704
13 1.367 217.57 0.0045963
14 1.367 217.57 0.0045963
15 1.445.8 230.11 0.0043458
16 1.485.6 236.44 00042294
17 1.485. 6 236.44 00042294
18 1.843.4 293.39 0.0034084
139 1.843.4 Z293.39 0.0034084
20 1.910.5 304.06 00032888
21 1.910.5 304.06 0.00328388
22 2.003.9 318,92 0.0031355%
23 2.003.9 318.92 0.0031355%
24 2.372.9 377 66 00026479
25 2.372.9 377.66 0.0026479
26 2.382 3739.1 0.0026378
27 2.382 37911 00026378
23 2.618.6 416.76 0.00239395
29 2.618.6 416.76 0.0023995%
30 2.6937 4z9.24 000232397

Figure 4. Natural frequencies frem obtained by FEM.

Examples of modal shapes obtained analytically (left) and FEM (right) are pre-
sented in the figures 5 — 12. Figures 9 — 12 show the modal shapes of the circular
plate simply supported that take into account both the cos function and the sin func-
tion, according to (9).

Model name: Placa circulara

Study name: Frequency 1(-Default-)
Plot type: Frequency Amplitude1
Mocle Shape: 1 Value = 15227 Hz
Deformation scale: 0119717

Figure 5. Simply supported circular plate. Mode shape for n=0 and s=0.
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Model name: Placa drculara
Study name: Frequency 1{-Default-)
Plot type: Frequency Amplitudef
{ Mode Shape 1 6 Valug = 92179 Hz
/ Deformation scale: 0.0761454

Figure 6. Simply supported circular plate. Mode shape for n=0 and s=1.

Model name: Placa circulara

Study name: Fre quency 1¢-Default-)

Plot ype: Frequency Amplitude 15

Mode Shape : 15 Value = 23011 Hz
| Deformation scale: 0.0608116

Figure 7. Simply supported circular plate. Mode shape for n=0 and s=2.

Model name: Placa circulara

Study name: Fre quency 1¢{-Default-}
Plot type: Frequency Amplitude30
Mode Shape : 30 Value = 42824 Hz
Deformation scale: 0.0520841

Figure 8. Simply supported circular plate. Mode shape for n=0 and s=3.
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Model name: Placa dreulara

Stucly name: Frequency 1{-Default-)
Plot type: Frequency Amplitude3
Mode Shape : 3 Value = 43.062 Hz
Deformation scale: 0.11088

|
Cresigey. X .
f
o X .

Figure 9. Simply supported circular plate. Mode shape for n=1 and s=0.

Model name: Placa drculara
Study name: Frequency 1¢-Default-)
Plot type: Frequency Amplituded
Mode Shape : 9 Value = 15041 Hz
Deformation scale: 0.0816658

/.
”-‘x -
/.‘
‘x-

Figure 10. Simply supported circular plate. Mode shape for n=1 and s=1.
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Medlel name: Placa circulara
Stucly name: Frequency 1{-Defaul t-)
Plot type: Frequency Amplitudes
Mode Shape + 4 Value = 79.429 Hz
Deformation scale: 0.111253

Figure 11. Simply supported circular plate. Mode shape for n=2 and s=0.

Model name: Placa crculara

Studly name: Frequency 1¢-Default-)
Plot type: Frequency Amplitude 14
Mode Shape : 14 Value = 21757 Hz
Deformation scale: 0.0883459

Figure 12. Simply supported circular plate. Mode shape for n=2 and s=1.
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5. Conclusions

The paper presents the vibration modes for a simply supported circular plate in
a 3D representation using MS Excel software and the comparison with modal shapes
obtained from the modal analysis obtained using SolidWorks software.

The eigenvalues A, were calculated for seven values of the nodal diameters
n=0, 1, .., 6 and ten values of the nodal circles s=0, 1, ..., 9. For these values the
natural frequencies were calculated.

The large number of natural frequencies (70) was chosen to illustrate the ease
with which the natural frequencies, respectively the vibration modes, can be calcu-
lated by the analytical method compared to the modal numerical method. For exam-
ple, out of the 30 results obtained by the numerical modal analysis, only the first 16
natural frequencies can be compared with the analytically determined natural fre-
quencies which are presented in Table 3.

It should be taken into account that the results obtained from the modal numer-
ical analysis give us the vibration modes for both variants of the modal function (9):
cos(nB) and sin(n,0), vibration modes for which the natural frequency has the same
value, respectively the same eigenvalue A, s, according to (10).

The numerical results by FEM for the first 30 vibration modes of the circular
plate have highlighted the fact that the natural frequency deviations obtained by the
two methods are less than 0.02%.

From the analysis of figures 5 — 12, a very good correlation of the modal shapes
obtained both analytically and through FEM can be observed.
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