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Abstract. The paper presents the strain energy of the circular plate clamped 
all around through a relation obtained analytically and the graphic repre-
sentation of the modal shapes and the maximum normalized strain energy 
along the x axis. Depending on the number of nodal circles s and the nodal 
diameters n, the maximum strain energy can be both in the center of the 
circular plate clamped all around, as well as the first ventral points from the 
center of the circular plate towards the outside of the plate. 
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1. Introduction

In the second part of the paper, the authors present the strain energy of the cir-
cular plate clamped all around through a relation obtained analytically by using Bes-
sel functions and the graphic representation of the modal shapes and the maximum 
normalized strain energy along the x axis, according to fig. 1 – 7 from first part of 
the paper. 

In this context, the bibliographic references and the bibliography are identical 
to the one presented in the first part of the paper. 

2. Strain energy

The strain energy of bending and twisting of the plate expressed in polar coor-
dinates [11] is: 
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where, 
dA=r·dr·dθ 
D [Nm] is the flexural rigidity 
ν is Poisson’s ratio 
r [m] is the plate radius 
θ [rad] is the angle for polar coordinates 
The strain energy is directly proportional to the second-order derivative of the 

modal function, respectively: 
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The relations are used for the derivation of the Bessel functions: 
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and the strain energy function becomes: 
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It can be seen from (4) that the strain energy function is a surface function of 
r/R and the angle θ. 

3. Results 

The maximum strain energy from the first relation (4) is obtained along the x 
direction with de notation from fig. 1 – 7 from first part of the paper. 

For the dimensionless wave numbers presented in tab. 1 (part I of the paper), 
below, in figures 1 - 7 are presented the modal shapes and the maximum strain en-
ergy along the x direction. 
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Figure 1. Normalized mode shape and strain energy for s=0 and n=0, …, 5. 



 
92 

  

  

  
Figure 2. Normalized mode shape and strain energy for s=1 and n=0, …, 5. 
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Figure 3. Normalized mode shape and strain energy for s=2 and n=0, …, 5. 
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Figure 4. Normalized mode shape and strain energy for s=3 and n=0, …, 5. 
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Figure 5. Normalized mode shape and strain energy for s=4 and n=0, …, 5. 
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Figure 6. Normalized mode shape and strain energy for s=5 and n=0, …, 5. 
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Figure 7. Normalized mode shape and strain energy for s=6 and n=0, …, 5. 
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Fig. 1 present the first six vibration modes and normalized strain energy for 
nodal circle s=0 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

Fig. 2 present the first six vibration modes and normalized strain energy for 
nodal circle s=1 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

Fig. 3 present the first six vibration modes and normalized strain energy for 
nodal circle s=2 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

Fig. 4 present the first six vibration modes and normalized strain energy for 
nodal circle s=3 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

Fig. 5 present the first six vibration modes and normalized strain energy for 
nodal circle s=4 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

Fig. 6 present the first six vibration modes and normalized strain energy for 
nodal circle s=5 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

Fig. 7 present the first six vibration modes and normalized strain energy for 
nodal circle s=6 and nodal diameters n=0, 1, 2, 3, 4 and 5 on x direction. 

4. Conclusion  

The paper presents the normalized vibration modes and strain energy for a cir-
cular plate clamped all around obtained for the maximum value of strain energy on 
x direction taking into consideration the first relationship (4). Using the Bessel func-
tions of the first kind, the strain energy function was analytically determined. 

The normalized mode shape and strain energy is illustrated in fig. 1 – 7 for the 
following dimensionless wave numbers λn,s

2: nodal circles s=0, 1, ..., 6 and nodal 
diameters n=0, 1, .., 5. 

From the analysis of figures 1 - 7 it can be found that the maximum normalized 
strain energy is in the center of the circular plate clamped all around, for the nodal 
diameter n=0 regardless of the number of nodal circles s. For values of nodal diam-
eters n>0 the strain energy becomes zero in the center of the plate. 

For s=0 and n>0, the strain energy is maximum at the clamped area of the cir-
cular plate. 

For s>0 and n>0, the deformation energy is maximum at the first ventral point 
from the center of the plate, compared to the case of the doubly supported beam 
where the maximum strain energy is right at the clamped end. As the number of 
nodal diameters n increases, the maximum strain energy keeps moving away from 
the center of the circular plate. 

Taking into account the 3D representation of the mode shapes (presented in part 
I), it is found that for n=1 we have one diameter of inflection, for n=2 we have 4 
diameters of inflection, for n=3 there are 6 diameters of inflection, and so on, so we 
can say that for n >1, the number of inflection diameters is equal to 2n. The number 
of inflection circles is equal to the number of nodal circles s. 
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