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energy representation (part I)
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Abstract. The first part of the paper presents a study regarding the dy-
namics behavior of thin circular plate clamped all around. An analytical
investigation is performed and the results in terms of mode shapes are
used to highlight the plate’s dynamics. The modal shapes are obtained
using Bessel functions and their graphic representation is presented in
3D by using MS Excel software.
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1. Introduction

In mechanical and civil engineering structures, the circular plates are often used.

Their support types are imposed by different conditions and often are imposed
by the structures functions and exploitation [1].

Circular plates are plane and thinned structures which are characterized by the
thickness h. The thickness is small compared to the radius R [2].

Many researchers have been obtained analytical solutions. Their research has
focus on the topic of natural frequencies of the plates [3-6].

The first researches regarding vibrations of plates were published at the end of
the 18th century by researchers as Euler and Bernoulli. Their research was continued
by Tanaka, Chladni, Konig, Rayleigh, Ritz etc.

In the recent times: Timoshenko and Leissa for instance brought important pro-
gresses in this domain [7-11], by development of methods in order to solve the plates
and establish some solutions of their differential equations of equilibrium.

In the paper, the modal functions for a circular plate clamped all around are
derived by using Bessel functions and the normalized modal shapes are illustrated in
3D by using MS Excel.
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2. Analytical approach

Following the methodology described in [2] the differential equation of motion
for the transverse displacement w of a circular plate is given by:

DV4w + p— (1)

where,
D [Nm)] is the flexural rigidity and is defined by:

Eh3

D=5 2

T 12(1-v2)
E [N/m?] is Young’s modulus
h [m] is the plate thickness
v is Poisson’s ratio
p [m] is mass density per unit area of the plate
t [s] is time
V4= (V?)? and V? is the Laplacian operator.
Free vibrations are assumed and the motion is expressed as:

w = Wcos(wt) 3)

where,
o [rad/s] is the circular frequency
W is a function only of the position coordinates.
Then, by substituting the equation (3) into equation (1) we obtained:

(VY — kW = (V2 + k?) (V2 — k)W “

where the dimensionless wave number k defined as:

4 _ P’
Kt =L )
By superimposing the solutions, the complete solution to equation (4) become:
{VZW1 + k2W; =0 ©)
VZ W2 - k2W2 =0

It is assumed that the Fourier components are in 6 and the solutions (6) becomes:
W(r,0) = X5-o W, (r) cos(nf) + Y-y W, (1) sin(n) @)

The origin of a polar coordinate system of the circular plate clamped all around
is taken to coincide with the center of the circular plate. For the analyzed case, the
plate has no internal holes. The symmetry of the boundary conditions respect to one
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or more diameters of the circular plate exist. In this case the terms involving sin(n0)
are not needed [11].

Taking in consideration the Bessel functions, by substituting the equation (7)
into equation (6), the general solution in polar coordinates for the circular plate be-
comes:

W, (r,0) = [A, ), (kr) + C,I,,(kr)]cos(n@) ®)

where,
n =0 ... o represents the number of nodal diameters
A, B, are the coefficients obtained from boundary conditions
Jn is the Bessel function of the first kind
I, is the modified Bessel function of the first kind.
The boundary conditions for a circular plate clamped all around with radius R :

W(R) =0
{aw(m —0 )
or

When equation (9) is substituted into equation (8), the existence of a nontrivial
solution yields the characteristic determinant:

I )| _
Ia@) T'a()

0 (10)

where, A=kR.
Next, the recursion relations will be used:
{/1] "D =1y (D) = Yny1 (D)
A"y () = nly (D) + Yny1 (D)

The frequency equation is obtained by expanding equation (10):
]n()l)]n+1()l) + In()l)]n+1()l) =0 (12)

The solutions of the frequency equation give us the dimensionless wave num-
bers A%, where, n represents the number of nodal diameters, and s the number of
nodal circles and does not include the contour circle.

The normalized mode shape function is:

W (r, e)n,s = []n (An,s'z) Mln (An,yg)] cos(nf)

(11

R) In(Ans) (13)
w(r, e)n,s = []n (An,s'g) - %In (An,s'g)] sin(né)
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3. Results

The dimensionless wave numbers A,s> depending on the number of nodal di-
ameters n, respectively the number of nodal circles s are presented in table 1.

Table 1. Dimensionless wave numbers A,

] Nodal diameters n
0 1 2 3 4 5

0 10.21583 | 21.2604 | 34.87704 | 51.03004 | 69.66583 | 90.73899
1 39.77115 | 60.82867 | 84.58265 | 111.0214 | 140.1079 | 171.8030
2 | 89.10414 | 120.0792 | 153.8151 | 190.3038 | 229.5186 | 271.4282
3 158.1842 | 199.0534 | 242.7206 | 289.1799 | 338.4112 | 390.3895
4 | 247.0064 | 297.7601 | 351.3360 | 407.7295 | 466.9250 | 528.9021
5 | 3555693 | 416.2026 | 479.6751 | 545.9830 | 615.1140 | 687.0511
6 | 483.8722 | 554.3824 | 627.7441 | 703.9546 | 783.0036 | 864.8769

The mode shapes for the circular plate clamped all around is presented in the
figures 1 - 7.

Fig. 1 present the first six vibration modes for nodal circle s=0 and nodal diam-
etersn=0, 1, 2, 3,4 and 5.

Fig. 2 present the first six vibration modes for nodal circle s=1 and nodal diam-
etersn=0, 1,2, 3,4 and 5.

Fig. 3 present the first six vibration modes for nodal circle s=2 and nodal diam-
etersn=0, 1,2, 3,4 and 5.

Fig. 4 present the first six vibration modes for nodal circle s=3 and nodal diam-
etersn=0, 1, 2, 3,4 and 5.

Fig. 5 present the first six vibration modes for nodal circle s=4 and nodal diam-
etersn=0, 1,2, 3,4 and 5.

Fig. 6 present the first six vibration modes for nodal circle s=5 and nodal diam-
etersn=0, 1, 2, 3,4 and 5.

Fig. 7 present the first six vibration modes for nodal circle s=6 and nodal diam-
etersn=0, 1, 2, 3, 4 and 5.
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n=4 n=

Figure 1. Mode shapes for the circular plate clamped all around; nodal circle s=0,
nodal diameters n=0, ..., 5.
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n=4 n=5

Figure 2. Mode shapes for the circular plate clamped all around; nodal circle s=1,
nodal diameters n=0, ..., 5.
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n=4 n=

Figure 3. Mode shapes for the circular plate clamped all around; nodal circle s=2,
nodal diameters n=0, ..., 5.
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n=4 n=5

Figure 4. Mode shapes for the circular plate clamped all around; nodal circle s=3,
nodal diameters n=0, ..., 5.
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Figure 5. Mode shapes for the circular plate clamped all around; nodal circle s=4,
nodal diameters n=0, ..., 5.

83



n=4 n=>5

Figure 6. Mode shapes for the circular plate clamped all around; nodal circle s=5,
nodal diameters n=0, ..., 5.
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n=4 n=>5

Figure 7. Mode shapes for the circular plate clamped all around; nodal circle s=5,
nodal diameters n=0, ..., 5.

4. Conclusions
The paper presents the vibration modes for a circular plate clamped all around

in a 3D representation using MS Excel software. Using the Bessel functions, the
frequency equation and the modal function were analytically determined.
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The dimensionless wave numbers A,s> were calculated for six values of the
nodal diameters n=0, 1, .., 5 and seven values of the nodal circles s=0, 1, ..., 6 and
presented in table 1.

For these values of nodal diameters and nodal circles, the modal shapes for a
circular plate clamped all around in polar coordinates are illustrated in figures 1 — 7,
by using the first relation of the system (13), respectively taking cos(n6) into ac-
count. In this case, the inflection points of the odd nodal diameters (n) pass through
the y axis, and the modal function along this direction has zero value.

If the second relation of the system (13) is used, which takes sin(n6) into ac-
count, the representation of the modal shapes is rotated by 90 degrees, respectively,
the inflection points of the modal shapes for odd nodal diameters (n) pass through
the x axis (fig. 8 — 10).

.Y -Y
e ‘x “ .

n=1 n=3
Figure 8. Mode shapes for the circular plate clamped all around with sin(n0);
nodal circle s=0.

n=1 n=3

Figure 9. Mode shapes for the circular plate clamped all around with sin(n0);
nodal circle s=1.
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n=1 n=3

Figure 10. Mode shapes for the circular plate clamped all around with sin(n6);
nodal circle s=2.
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