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This paper proposes an analytic relation for the deflection of a cantile-

ver beam with a transverse crack subjected to dead load. The mathe-

matical relation is deduced involving the decreased capacity of the 

beam to store energy, which is in direct relation with the crack position 

and depth. Eventually, the validity of the relation is proved by means of 

the finite element method. 
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1. Introduction 

Cantilever beams are subject of dead weights and operational loads. Mathe-

matical relations to calculate the free end deflection of such structures with con-

stant cross-section [1]-[3] and even for the tapered beams [4] are known. The de-

flection is calculated by considering the distribution of the bending moment along 

the beam, respectively the equivalent bending moment for the tapered beams. An 

estimation of the deflection of stepped beams can be made involving relations pro-

posed in [5]-[6], but the results accuracy is affected by the disturbance of the state 

of stress in the region where the cross-section changes suddenly [7]. The bigger the 

cross-section decrease, the bigger the error in estimating the free end deflection. 

The real deflection for stepped beams is always bigger as the calculation because a 

region of the beam in the proximity of the sudden cross-section increase or de-

crease does not contribute to the stiffness of the beam. Thus, from calculus, we al-

ways obtain an under-evaluated deflection. 

As far as we know, there is no relation that allows calculating the deflection of 

a cantilever beam with transverse cracks. In this paper we propose a relation to cal-

culate the deflection of a cantilever beam with a transverse crack, when the load 

consists of dead weight. The energy method is considered and a severity coeffi-

cient, similar to that found for the case of vibrating beams [8] is used. We prove by 
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means of the finite element method (FEM) that the proposed mathematical relation 

provides accurate results.  

2. Analytical approach 

The analysis is performed for a clamped beam (fig. 1) loaded with its own 

weight p=ρAg [N/m], where g [m/s2] is the earth gravity. The beam is made of 

structural steel with density ρ [kg/m3], Young modulus E [N/m2] and having length 

L [m]. The beam is of rectangular section having area A=bh [m2] and moment of 

inertia IU [m4]. Under the action of its own mass, the maximum deflection of the 

beam at the free end is d [m]. 

 
Figure 1. Clamped beam with transversal damage at the fixed end 

 

From the strength of the materials it is known that the deflection at the free 

end of the beam can be determined with the relation: 
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and the moment of inertia from relation (1) becomes: 
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Let's considering a crack near de clamped end (fig. 1) at the distance x [m]. 

The crack is along the whole width b [m] of the beam and has the depth a [m]. For 

this case, the moment of inertia of the equivalent beam (with reduced constant 

cross-section that exhibit the same free end deflection as the damaged beam) be-

comes Iech [m
4], and, consequently, the deflection of the beam with a crack can be 

written as: 
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From relation (3), the moment of inertia of the damaged beam becomes: 

 ( )δ+
=

dE

pL
I ech

8

4

 (4) 

It is known that the fundamental natural frequencies of the beam with constant 

cross-section is computed with the relation: 
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where, λ is the dimensionless wave number for the first vibration mode. 

Taking into consideration relations (5) and (4), the natural frequency for the 

beam with a crack is: 
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By dividing fD to fU it will be obtained: 
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From the literature it is known that [9]: 

 ( ) 2

1 ( )D

U

f
a x

f
γ φ ′′ = − ⋅    (8) 

In the relation (8), we denote with ( )aγ  the severity of the crack that has the 

relative depth /a a h= . We consider two beams, both having h/L=1/200, and the 

edges of the cross-section in the relation h/b=1 and h/b=0.1, respectively. The se-

verity, according to [10], is: 

 ( ) ( ) ( ) ( ) ( )4 3 2
0.4464 0.2483 0.1376 0.0037a a a a aγ = − + −  (9) 

Alternatively, the values for the severity can be obtained from figure 2, by 
choosing the severity for a given damage depth [11]. 
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Figure 2. Values for the severity when the deep of the crack is between 0 and 0.5 
 

One can observe in figure 2 that the severity does not depend on the dimen-

sions of the rectangular cross-section of the beam, i.e. the ratio h/b. 

The second term in the right part of relation (8), namely ( )xφ ′′ , represents the 

normalized bending moment or the normalized beam curvature at the normalized 

distance  /x x L= . The bending moment is calculated as the second derivative of 

the vibration mode shape of the beam. For the clamped beam, it is: 

 ( ) [ ]1 cos( ) cosh( )
cos( ) cosh( ) sin( ) sinh( )

2 sin( ) sinh( )
x x x x x

λ λφ λ λ λ λ
λ λ

 +′′ = + − + + 
 (10) 

From the mathematical relations (7) and (8), which both reflect the frequency 

ratio fD/fU, the deflection of the beam with a transverse crack results in: 
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Denoting the fraction in the right part of relation (11) as κ, and replacing the 

deflection of the beam with constant cross-section d with its expression defined in 
relation (1), we obtain the deflection of the cracked beam: 
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We represent in figure 3 the evolution of the coefficient κ for two cases of the 

crack depth: a/h=0.25 and a/h=0.50. The crack is relocated along the whole length 

of the beam ( )0,x L∈ .  

 

 
Figure 3. Deflection coefficient for a/h=0.25 and a/h=0.50 when crack is moving 

along the whole length of the beam 

 

One can observe from figure 3 that the coefficient κ equals the unit at the free 

end of the beam. The proportionality between the amplitudes of the two curves, 

imposed by the crack depth is obvious. 

3. Experimental research 

In this section we prove that relation (12) derived for the deflection of a 

cracked beam works. To this aim, we involve the FEM and perform simulations for 

the beam with a uniform cross-section that has the dimensions and mechanical 

properties given in table 1.  

 

Table 1. Properties of the beam with a uniform cross-section  

Length  

L [mm] 

Width  

b [mm] 

Thickness 

h [mm] 

Young modulus 

E [N/m2] 

Density 

ρ [kg/m3] 

1000 50 5 2 ×1011 7850 

 

The damaged beam has the same geometry as the healthy beam, but cracks 

with different positions and depths. The damage scenarios are described in table 2. 

For all cases, the crack width is w=0.04 mm. The analysis is performed with the 

ANSYS software, the beam getting a mesh with the maximum edge of the hexahe-

dral elements 2 mm. In consequence, the beam with a constant cross-section is dis-

cretized with 37500 elements and 193282 nodes.  
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For the beams with discontinuities, the number of elements and nodes increase 

because around the discontinuity the mesh needs to be finer in order to make the 

transition from the constant cross-section to the reduced cross-section. The finest 

mesh is generated at the top of the crack.   

 

Table 2. Damage scenarios  
Scenario 

no. 

Crack depth a 

[mm] 

Crack posi-

tion x [mm] 

Curvature 

φ  

Severity 

γ 

Coefficient 

κ 

S1 0.5 150 0.79377 0.000802 1.001011 

S2 0.5 290 0.60417 0.000802 1.000586 

S3 0.5 470 0.37493 0.000802 1.000225 

S4 1 150 0.79377 0.003492 1.004414 

S5 1 290 0.60417 0.003492 1.002554 

S6 1 470 0.37493 0.003492 1.000982 

S7 1.5 150 0.79377 0.008186 1.010395 

S8 1.5 290 0.60417 0.008186 1.006002 

S9 1.5 470 0.37493 0.008186 1.002305 

 

In table 3, we compare the deflection obtained directly from Fem simulation 

with those calculated involving the deflection of the beam with uniform cross-

section multiplied with the coefficient κ. One can observe in the mentioned table 

that the differences are extremely small, the error being less than 0.1%. even if the 

deflection increase is not big at all.   

 

Table 3. Deflection achieved by calculus and simulation  

Scenario 

no. 

FEM Calculus FEM Error 

ε [%] Deflection 

d [mm] 

Coefficient  

κ 

Deflection 

d+δ [mm] 

Deflection 

d+δ [mm] 

S1 22.948 1.001011 22.97122 22.969 0.009662 

S2 22.948 1.000586 22.96145 22.95959 0.008077 

S3 22.948 1.000225 22.95318 22.95256 0.002671 

S4 22.948 1.004414 23.04931 23.03289 0.071239 

S5 22.948 1.002554 23.00661 22.99679 0.042704 

S6 22.948 1.000982 22.97054 22.96793 0.011376 

S7 22.948 1.010395 23.18656 23.14839 0.164593 

S8 22.948 1.006002 23.08575 23.06658 0.083044 

S9 22.948 1.002305 23.0009 22.99626 0.020181 

 

An overview of the results presented in table 3 is given in figure 4. One can 

again observe the good fit of the results achieved by simulation and calculus. 
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Figure 4. Deflection of the beam for the considered damage scenarios 

 

Since we considered numerous damage scenarios, chosen randomly, for which 

the calculated deflections fit these obtained by simulation, we can conclude that 

relation (12) is precise and can be used to determine the deflection of cracks with 

discontinuities. Note that, this mathematical relation base on the capacity of the 

cracked beam to store energy, but does not use the equivalent bending moment [12] 

because the interval on which the cross-section is reduced is zero or infinitesimally 

small. 

4. Conclusion  

We introduce a mathematical relation to calculate the deflection of cantilever 

beams discontinuities of the cross-section under dead load. The relation involves a 

severity coefficient deduced for the crack at the fixed end, which is adjusted with 

the local effect when it is located elsewhere. The local effect considers the bending 

moment at the crack location, which is proportional with the energy stored at that 

location. Further research will focus on extending the theory to beams that have 

cross-sections with a different shape, and will also consider the cases of the beams 

with other support types and/or multiple cracks.  
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