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of a truss 
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Abstract. Trusses are everywhere; they are used in bridges, antenna 

towers, cranes, even in parts of the International Space Station. And for 

good reason, they allow us to create strong structures while using ma-

terials in very efficient and cost-effective way. Trusses it is essentially a 

rigid structure made up of a collection of straight members. The type of 

truss depends on how the horizontal and diagonal beams are arranged. 
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1. Introduction 

Trusses are very popular construction by using a relatively small amount of 

material for the weight they can support [1]. A single-span truss is like a simply 

supported beam because it carries vertical loads by bending [3]. A truss is a simple 

structure whose members are subject to axial compression and tension only and but 

not bending moment [5]. Early trusses were built without precise knowledge of 

how the loads are carried by each part of the truss. These trusses were patented as 

from 1840, at a time when new bridge designs we’re being developed to accom-

modate the expansion of the railroad industry and were patented by Howe (fig. 1, 

a), Pratt (fig. 1, b) and Warren [8]. 

Warren truss contains a series of isosceles triangles, or equilateral triangles 

(fig. 2, a). To increase the span length of the truss bridge, verticals are added for 

Warren Truss (fig. 2, b). Pratt truss is characterized [9] by having its diagonal 

members (except the end diagonals) slanted down towards the middle of the bridge 

span. 

 

 
Figure 1. Howe and Pratt truss. 
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Figure 2. Warren truss. 

 

The members of a truss can be subjected at tension, compression or only par-

ticipate in increasing the rigidity and stability of the truss without being stressed 

and the latter are called zero force members. In a truss, the zero force elements are 

hinged beams at both ends, and their dynamic behavior is analyzed in this paper. 

 

2. Forces in Trusses 

To determine the reactions [4] in the points of support the equilibrium equa-

tions from the strength of materials are used: the sum of the forces and reactions on 

the horizontal is equal to zero; the sum of the forces and reactions on the vertical is 

equal to zero; the sum of the moments of the external forces and of the reactions in 

relation to a support is zero. 

Below is an explanation of what happens if a force is applied to a triangular 

element  

 

 
Fig 3 Triangle transfers a force. 

 

When a force (the load) is applied to one of the corners of a triangle, it is dis-

tributed down each side. The two sides of the triangle are squeezed. Another word 

for this squeezing is compression. The third side of the triangle is pulled, or 

stretched sideways. Another word for this stretching is tension [7]. 

A simple truss is composed of triangles, which will retain their shape even 

when removed from supports [6]. A truss is considered statically determinate when 

the static equilibrium equations can be used to find the reactions on that structure. 

The method of joints analyzes the force in each member of a truss by breaking the 

truss down and calculating the forces at each individual joint. When using the 
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method of joints to solve for the forces in truss members, the equilibrium of a joint 

(pin) is considered. 

And by solving the reactions in fig. 4 results which are compressive efforts 

(negative) and which stretching (positive). 

There are rules to identify the beam of a triangle not subject to stresses (com-

pression or stretching), respectively zero-force members: 

1. If a joint has only two non-collinear members and there is no external load 

or support reaction at that joint, then those two members are zero force members; 

2. If three members form a truss joint for which two of the members are col-

linear and there is no external load or reaction at that joint, then the third non-

collinear member is a zero force member; 

3. Zero-force members can be removed (as shown in the figure 4) when ana-

lyzing the truss. The zero-force members are used to increase stability and rigidity 

of the truss, and to provide support for various different loading conditions. 

 

 

Figure 4. Trusses with zero force members (upper side) and without zero force 

members (lower side). 
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3. Natural frequencies and modal shape for a hinged - hinged beam 

As shown above, there can be elements with zero forces in a truss. For this el-

ement, the natural frequencies and vibration modes can be calculated as a simply 

supported beam. 

For a continuous structure (beam) the frequencies (fn) are determined by 

means of the relation (1) [10]: 
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ω [rad/s] – is its own pulsation; 

ρ [kg/m3] – the density of the material; 

A [m2] – cross-sectional area; 

E [N/m2] – is the longitudinal modulus of elasticity; 

I [m4] – moment of inertia of the cross section of the beam; 

m [kg] - represents the mass of the beam; 

L [m] - represents the length of the beam; 

∞= …1n  - vibration mode number. 

Knowing the geometry of the structure and the material from which the struc-

ture is made, in order to determine the natural frequencies with the relation (1) we 

must know the values of the dimensionless wave number. In the case of free vibra-

tions, the differential equation of the displacement for transverse vibrations of the 

beam is: 
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where, w [m] - vertical movement of the neutral axis. The general solution is: 
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The integration constants An, Bn, Cn and Dn are determined from the initial 

boundary conditions: the deflection and the bending moment at the hinged points 

are zero, respectively (L is the length of the element): 
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It is obtained such a system of 4 equations with 5 unknowns, which results in 

the frequency equation: 

 ( ) 0sin =Lan
 (7) 

with solutions: an = π, 2π, ..... nπ, respectively the modal function: 
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( )xaxW nn sin)( ±=

 (8) 
The first 6 vibration modes for a simply supported beam of length L = 1 with 

the normalized function (+ 1) are illustrated in figure 5: 

 

 
Figure 5. The first 6 vibration modes for simply supported beam. 

 

4. Conclusion 

The main conclusions, which highlight the essential elements of the research 

are: 

- if a joint has 3 membres and no external load, or if 2 of the membres are co-

liniar, the third non-coliniar member is a zero-force member; 

- were put evidence the internal tensions which appears in a triangular element 

with lattice beams when an external force is applied; 

- the rules for zero force in elements of trusses were highlighted; 
- for these elements, which are considered as a simply supported beam, the 

first 6 modes of vibration were drawn. 

Knowing the modal function that describes the vibrational movement of the 
element, we can determine the energy function that allows us to locate the damage 

for the monitored structure [2].  
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