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Dimensionless wave numbers evolution of a three spans  
simply supported beam when the intermediate supports  

are moving along the whole beam 

Zeno-Iosif Praisach*, Dorel Ardeljan, Constantin-Viorel Pașcu 

Abstract. Continuous beams simply supported with several intermediate 

supports are very common in engineering achievements everywhere. The 
paper shows the evolution of the dimensionless wave number in 3D for-
mat, respectively of the eigenfrequencies for a continuous beam with 

three openings when the intermediate supports take any position inside 
the beam. The frequency equation for calculating the dimensionless wave 
number is presented and the modal function is given with an example for 

the case where the eigenfrequency has the maximum value at fist vibration 
mode. 
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1. Introduction 

Beams that have more than one span and there are continuous throughout their 
lengths are known as continuous beams. A continuous beam is a statically indeter-
minate multispan beam on hinged supports. 

There are several methods to analyze the dynamic behavior of continuous 
beams, such as: transfer-matrix technique [1], wave-propagation approach, Ray-
leigh-Ritz procedure, iterative procedure, conventional method of solving the equa-
tion of motion directly, the finite element method. 

Continuous structures such as beams, can be modeled by discrete mass and stiff-
ness parameters and analyzed as multi-degree of freedom systems [3, 4]. For these 
types of structures, it is necessary to assume homogeneous and isotropic material 
that follows Hooke’s law [2, 6]. 

For a continuous beam of constant section, the natural frequency (1) for each 
vibration mode can be determined if the dimensionless wave number is known. 
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where, 
fn [Hz] is the natural frequency; 
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an - dimensionless wave number; 
E [N/m2] – Young’s modulus; 

I [m4] - moment of inertia; 

m [kg] – beam mass; 

L = l1 + l2 + l3 [m] – beam length; 

n = 1, 2, …, ∞ – number of vibration mode. 

The dimensionless wave number is important both for calculating the natural 

frequencies and for the relationship of the mode shapes for each vibration mode. The 

precision of evaluating the natural frequencies is crucial, because small structural 

changes lead to reduced modal parameter changes [10]. 

2. Boundary conditions and frequency equation 

In this paper it is considered a continuous beam supported at 4 (four) hinges, 

that means three spans (fig. 1). It is known that the deflection and the bending mo-

ment is zero for the end hinges. Since the beam is continuous, the slope and bending 

moment to the left and to the right of the intermediate supports are the same. Also, 

the deflection is zero for the intermediate supports [7, 8, 9]. 

 

Figure 1. Continuous beam with three spans 

 

Based on the above statements, for each support (1, 2, 3, 4), it can be written: 
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where, the characteristic function or normal mode of span can be expressed: 

 ( ) ( ) ( ) ( ) ( )iniiniiniiniii xaDxaCxaBxaAxW coshsinhcossin +++=  (3) 

with i = 1, 2, 3 represents the number of spans. 

After solving the system of equations (2) for calculating the integration coeffi-

cients: Ai, Bi, Ci, Di by using the following notation (4) for the terms with constant 

value for a certain configuration of the continuous beam between two consecutive 

supports: 
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 (4) 

the frequency equation of the system (2), which allows us to obtain the dimensionless 

wave number an, for a continuous beam with three spans, becomes: 

 ( ) ( ) 031231122123222112112 =⋅⋅+⋅+⋅⋅+⋅ ZZZZZZZZZZ  (5) 

The solutions of equation (5) represent the dimensionless wave numbers for the 

n vibration modes with which we can calculate the natural frequencies (1) and also, 

we can plot the normalized mode shapes (3) for the continuous beam with three 

spans. 

3. Mode shape equation and integration constants  

The normalized mode shape equation for the continuous beam with three spans 

are obtained by solving the system (2) with the results replaced in (3). 

Thus, for each span, the functions result: 



 

20 

 [ ]























−=

+−+=









−=

)sinh(
)sinh(

)sin(
)sin()(

)sinh()cosh()cos()sin()(

)sinh(
)sinh(

)sin(
)sin()(

3

3

3

3333

222222222

1

1

1

1111

xa
la

la
xaAxW

xaCxaxaBxaAxW

xa
la

la
xaAxW

h

n

n

n

n

nnnn

n

n

n

n

 (6) 

with [ ]11 ,0 lx ∈ , [ ]22 ,0 lx ∈ , [ ]33 ,0 lx ∈ . 

The integration constants from (6) are: 
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and the constant A1 has the value so that the mode shape function (6) to be normal-

ized by the entire length of the continuous beam for each vibration mode separately. 

Dimensionless wave numbers evolution when the intermediate sup-

ports are moving along the whole beam 

We will take into account the fact that the intermediate supports (fig. 1) can be in 

any position along the normalized continuous beam (ll + l2 + l3 = 1, or l3 = 1 – l1 – l2). 

This means that, for each location of the intermediate supports, from relation (5), 

values of the dimensionless wave number are obtained for each vibration mode. 

By plotting all the obtained values of the dimensionless wave number in a 3D 

diagram, for each vibration mode separately, we obtain a surface that gives us a gen-

eral image on the evolution of the wave number depending on the position that the 

intermediate supports can have. 

Figures 2 - 7 show the evolution of the dimensionless wave number for the first 

six vibration modes (n = 6) for the normalized continuous beam with three spans. 
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Figure 2. Dimensionless wave number evolution for the 1st vibration mode. 

 

 
Figure 3. Dimensionless wave number evolution for the 2nd vibration mode. 

 

 
Figure 4. Dimensionless wave number evolution for the 3rd vibration mode. 
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Figure 5. Dimensionless wave number evolution for the 4th vibration mode. 

 

 
Figure 6. Dimensionless wave number evolution for the 5th vibration mode. 

 

 
Figure 7. Dimensionless wave number evolution for the 6th vibration mode. 
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4. Conclusion 

By analyzing figures 2 - 7, the following conclusions can be drawn: 

1. for first vibration mode, the maximum dimensionless wave number is  

obtained when the intermediate supports are placed equidistantly (fig. 8), l1 

= l2 = l3. Taking into account the relation (1), for this configuration of the 

continuous beam we also have the maximum eigenfrequency; 

2. when 01 →l  and 02 →l , the continuous beam behaves like a beam 

clamped at the left end and hinged at the right end; 

3. when 11 →l  and 12 →l , the continuous beam behaves like a beam hinged 

at the left end and clamped at the right end; 

4. when 01 →l  and 12 →l , the continuous beam behaves like a beam 

clamped at the both ends; 

Knowing the analytical expression of the modal function, it is easy to obtained 

the mode shape curvature function, on which depends the establishment of the location 

of a damage on the beam [5], in case of its appearance. 

 

 

Figure 8. Continuous beam with intermediate supports placed equidistantly –  

the first six normalized mode shapes. 
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