

Waiting for the train that never came: establishing a new *Podarcis muralis* (Laurenti, 1768) railway population in Romania

Andreea-Maria Lazăr^{1,*} and Alina-Florentina Mușet¹

¹ University of Oradea, Faculty of Informatics and Sciences,
Department of Biology, Oradea, Romania

* Corresponding author, E-mail: deegalazar99@gmail.com

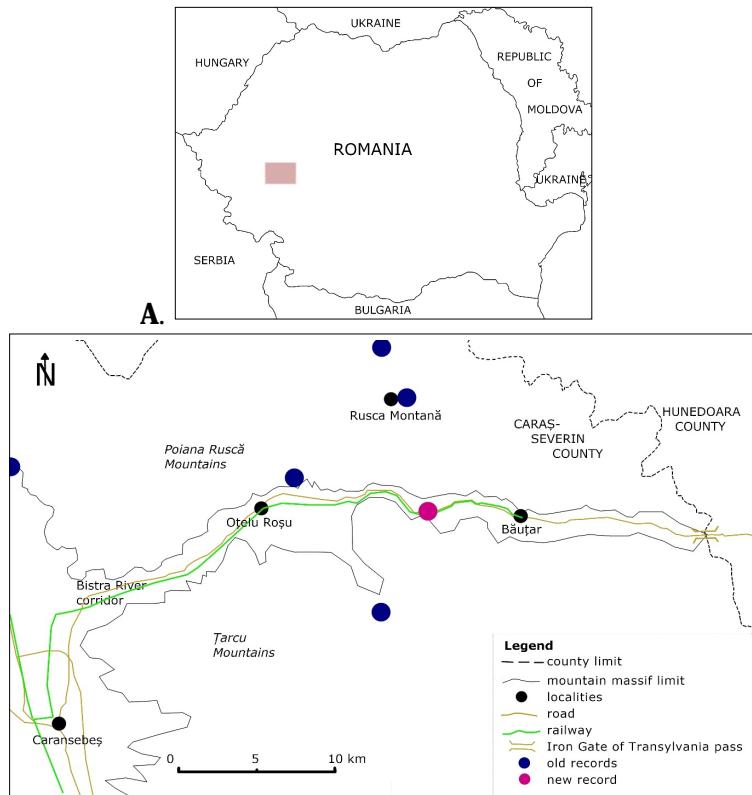
Article history: Received 29 August 2025; Revised 27 October 2025;
Accepted 1 December 2025; Available online 20 December 2025

©2025 Studia UBB Biologia. Published by Babeş-Bolyai University.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Abstract. Nowadays, man-made structures have become surrogate habitats for various species. Among them, lizards are often capable of using railways. In the autumn of 2024, we identified a new *Podarcis muralis* railway population on a railway abandoned for 11 years in southwestern Romania, near Voislova locality. On a 100-meter transect, we observed 13 *P. muralis* and 3 *Lacerta viridis*. Most wall lizards were subadults, indicating a breeding population on the railway. Probably, the lizards were introduced from the nearby marble quarry in Ruşchiţa, where the species is present. Although *P. muralis* was mentioned in the mountains surrounding Voislova, the habitats near the railway are not favorable to it.

Keywords: distribution, lizard, human-modified landscape, quarry, transportation infrastructure.


Introduction

Lizards are known to use different types of artificial or human-modified habitats, as ancient ruins in modern cities (Simbula *et al.*, 2019), town cemeteries (Heltai *et al.*, 2015), remains of fortification (Strijbosch *et al.*, 1980), ports (Iftime, 2005; Santos *et al.*, 2019), road embankments (Gherghel *et al.*, 2009), highway guardrails (Livo, 2025), artificial ditches in agricultural areas (Covaciuc-Marcov *et al.*, 2009a), etc. Among artificial habitats, railways play an important role for

lizards, which in many cases populate such structures (e.g., Sá-Sousa, 1995; Graitson, 2006; Covaci-Marcov *et al.*, 2006; 2009b; Livo, 2025), sometimes even expanding their range along them (Gherghel *et al.*, 2009). Abandoned railways have become well-represented elements in the landscape in some regions, thus their possible uses are analyzed nowadays (e.g., Sarmento, 2002; di Ruocco *et al.*, 2017). It appears that abandoned railways could even become green corridors, connecting protected areas with the outskirts of urban areas (see García-Mayor *et al.*, 2020). Recently, abandoned railways have been shown to be important for biodiversity, as they contribute to the maintenance and conservation of certain populations by providing habitats and resources (e.g., Leaney, 1983; Higginson and Dover, 2021; Pop *et al.*, 2021a, b; Dylewski *et al.*, 2022, 2025). Lizards were frequently mentioned on different railways (e.g., Graitson, 2006; Janssen *et al.*, 2025; Kovačević and Tvrtković, 2025), which could even serve as dispersal routes (e.g., Krämer *et al.*, 2025). *Podarcis muralis* (Laurenti, 1768) is a lizard species typically associated with rocky areas, both natural and human-made, in Romania (Fuhn and Vancea, 1961; Covaci-Marcov *et al.*, 2009b). At its range limit, it is even considered to spread using railways (e.g., Covaci-Marcov *et al.*, 2006; Gherghel *et al.*, 2009; Dudek, 2014; Gherghel and Tedrow, 2019), as human activities have created useful habitats and colonization routes in regions naturally devoid of suitable habitats (Wirga and Majtyka, 2015). *P. muralis* was frequently mentioned on railways (e.g., Graitson, 2006; Strugariu *et al.*, 2008; Dudek, 2014; Niedrist *et al.*, 2020; Williams *et al.*, 2021; Petreanu, 2023), as railways are considered major dispersal routes (Schulte *et al.*, 2013). Even where the species is introduced, the wall lizards are advancing through railways (Heden and Heden, 1999). In Romania, this species is primarily found in the southwestern sectors of the Carpathian Mountains (e.g., Cogălniceanu *et al.*, 2013). It is a xero-thermophilic species, present in rocky habitats (Fuhn and Vancea, 1961), although railway *P. muralis* populations were sometimes mentioned in the country in areas outside their ecological preference (Covaci-Marcov *et al.*, 2005, 2006; Strugariu *et al.*, 2008). Given that railways are usually perceived through their negative impact manifested by fauna road mortality, even in the case of reptiles (e.g., Pop *et al.*, 2021c, 2023; Banerjee *et al.*, 2023; Bhardwaj *et al.*, 2025), this fact indicates a positive facet, confirming that in some cases railways (both active and disused) could have even a conservative value for reptiles (Graitson, 2006). In this context, this note presents information about a new *P. muralis* population on an abandoned railway in south-western Romania, and a possible explanation of the probable causes of its origin.

Materials and methods

The field activity took place on 22 September 2024. The studied region is located in the Bistra River corridor (Fig. 1), in the northwestern part of Caraș-Severin County, at the boundary between the Western Carpathians (Poiana Ruscă Mountains) and the Southern Carpathians (Tarcu Mountains), near the Iron Gate of Transylvania pass (Mândruț, 2006). The region was traversed by a secondary normal gauge railway, which even had a segment with rack (Turnock, 2006). The railway, which connected Caransebeș and Subcetate (C.F.R., 1987; Turnock, 2006), has been without traffic since 2013 (C.F.R., 2012). The analyzed railway segment is situated approximately 1 km east of Voislova locality. The marble quarry in Rușchița is located approximately 19 km from the locality (Todor and Surd, 2013).

Figure 1. (A) The studied region location in Romania; (B) Detailed map of the Bistra River corridor with the new railway record of *P. muralis* (pink dot) and old records (blue dots, non-railway records according to Bogdan *et al.*, 2011, Iftime and Iftime 2013).

Results

We observed 13 *P. muralis* individuals (Fig. 2) (four adults, nine juveniles and subadults) on the abandoned railway from Voislova ($45^{\circ}31'05''$ N / $22^{\circ}28'27''$ E). The location is situated at an altitude of 341 meters. On the railway, we also observed three juvenile *Lacerta viridis* individuals. The lizards were directly observed, without being captured. They were photographed whenever possible. We spent 30 minutes on the railway and made a 100-meter transect. The wall lizards were very active, running away when we approached and hiding under the tracks or under the railway ballast. This observation was made at 4 pm on a warm, late-autumn day. The railway is partially overgrown with vegetation, particularly by shrubs and trees from neighbouring areas; however, there are also open segments where the railway ballast is exposed (Fig. 3).

Figure 2. *Podarcis muralis* on the abandoned railway from Voislova, Romania.

Figure 3. The abandoned railway from Voislova, Romania.

The location is situated east of Voislova, between this locality and Marga. Surrounding the railways are human-modified areas, including pastures, orchards, and agricultural fields, as well as areas with shrubs and trees interspersed between them.

Discussion

Most *P. muralis* individuals were juveniles and subadults, indicating that a sustainable, reproductive population exists on the abandoned railway from Voislova, as observed in other populations (Jablonski *et al.*, 2025). The railway has been disused for approximately 11 years (C.F.R., 2012), but the wall lizard has also been observed on functional railways (Covaciuc-Marcov *et al.*, 2006, 2009b; Niedrist *et al.*, 2020), as well as other lizard species (e.g., Graitson, 2006; Remacle, 2018; Janssen *et al.*, 2025). *P. muralis* is known for its ability to use transportation networks (e.g., Covaciuc-Marcov *et al.*, 2006; Graitson, 2006; Gherghel *et al.*, 2009; Dudek, 2014; Petreanu, 2023), but also other artificial habitats with stones, even outside its normal distribution range (e.g., Iftime *et al.*, 2008; Sas-Kovács and Sas-Kovács, 2014; Jablonski *et al.*, 2025). In Romania, the wall lizards were previously identified in human-modified habitats in mountain regions with favourable habitats and distribution records in natural habitats (Covaciuc-Marcov *et al.*, 2006, 2009b; Gherghel *et al.*, 2009). Nevertheless, the species was also observed in artificial habitats in plain areas, thus outside the region with favourable habitats (Covaciuc-Marcov *et al.*, 2005, 2006; Sas-Kovács and Sas-Kovács, 2014; Ile and Dumbravă, 2020). The record from Voislova is added to other railway populations of this species in Romania (Covaciuc-Marcov *et al.*, 2006, 2009b; Gherghel *et al.*, 2009).

The habitats surrounding the railway at Voislova (pastures, orchards, grassy areas, and agricultural cultures to a lesser extent) are not favorable to this species, which in Romania is typically associated with rocky areas, both natural and human-made (Fuhn and Vancea, 1961; Covaciuc-Marcov *et al.*, 2009b). Eventually, areas with shrubs and trees situated between agricultural cultures could be favorable for *Lacerta viridis*, a species associated with such habitats (e.g., Fuhn and Vancea, 1961; Sevianu *et al.*, 2022), and which was also observed on the railway, albeit in a smaller number of individuals. Nevertheless, *L. viridis* was not recorded in the neighboring region in the most recent review of Romanian herpetofauna, as it was mentioned only in one location on the other side of the pass and in three older locations in the western parts of the Poiana Ruscă Mountains (Cogălniceanu *et al.*, 2013). Records of *P. muralis* were even scarce, as in the region, there are only four old distribution records in the Poiana Ruscă Mountains (Cogălniceanu *et al.*, 2013). Nevertheless, the two species were previously mentioned in different locations from the Poiana Ruscă Mountains (Bogdan *et al.*, 2011) and Țarcu Mountains (Iftime and Iftime 2013). *L. viridis* was mentioned even at Voislova, and *P. muralis* at about 10 km from the railway population at Voislova, as it is the second most common species in the western sector of the Poiana Ruscă Mountains (Bogdan *et al.*, 2011).

Although the region, in a broad sense, has favorable habitats and wall lizard populations (Bogdan *et al.*, 2011, Iftime and Iftime 2013), the area neighboring the railway did not have favorable habitats, so *P. muralis* could not colonize the railway from its neighboring areas. Thus, this raises the question regarding the range expansion of the railway *P. muralis* population at Voislova. The introduction of this species, as a consequence of railway maintenance works and railway ballast, has been repeatedly indicated in the case of wall lizard railway populations (e.g. Covaciuc-Marcov *et al.*, 2006; Gherghel *et al.*, 2009; Dudek, 2014). Nevertheless, at Voislova, another explanation seems more plausible, as a large marble quarry is located in the region (approximately 19 km away) (Todor and Surd, 2013), and *P. muralis* has been mentioned in that locality (Bogdan *et al.*, 2011). Moreover, in the immediate vicinity of the railway, there is a marble warehouse and processing facility. Furthermore, until the late 1970s, a narrow-gauge railway existed between Ruşchiţa and Voislova, used to transport marble to Voislova (Todor and Surd, 2013). Probably through this narrow-gauge railway, *P. muralis* has spread directly or indirectly along the line between Ruşchiţa and Voislova, and from Voislova railway station, it has expanded along the normal-gauge railway. Thus, this would be an introduction related to transportation networks from nearby populations, but this could be verified only with genetic tools, as in other cases (e.g. Oskyryko *et al.*, 2020; Jablonski *et al.*, 2025; Naumov *et al.*, 2025) or by studying the species presence on the line at a wider scale. Nevertheless, the wall lizard was also introduced in other ways, such as through freight transport (Kowalik *et al.*, 2025), building materials (Sas-Kovács and Sas-Kovács, 2014; Ile and Dumbravă, 2020), horticultural trade (Jablonski *et al.*, 2025), and cargo boats (Oskyryko *et al.*, 2020). However, in this case, the marble quarry was an exporter of resources from the area; thus, the introduction of the wall lizard from other regions is less plausible (rather, individuals from Ruşchiţa were introduced in other localities alongside with the marble). The presence of railway populations was previously explained by migrating along railways or by introduction with the railway ballast (Covaciuc-Marcov *et al.*, 2006).

Probably, the railway offers the most appropriate habitats for the wall lizard's requirements in the region. This assumption is supported by the aspect of the habitat neighboring the railway, as well as by the fact that the region has a relatively cooler climate (Mândruț, 2006) compared to other areas populated by *P. muralis* in Romania (Fuhn and Vancea, 1961; Cogălniceanu *et al.*, 2013). Moreover, in the vicinity (approximately 15 km), there is a low-altitude *Zootoca vivipara* population (Bogdan *et al.*, 2011), a cold-adapted species (Fuhn and Vancea, 1961), which suggests that the region and habitats are not particularly favorable for *P. muralis*. In this context, the wall lizard may have been advantaged by increasing temperatures over the past few years (Nagavciuc *et al.*, 2022;

Ionita and Nagavciuc, 2025). Probably, the railway corresponds with the habitat and temperature requirements of *P. muralis*, as in other cases (Covaciuc-Marcov *et al.*, 2006). This fact indicates that *P. muralis* is one of the winners of anthropization, as it could adapt to artificial habitats which resemble its natural habitats (e.g., Covaciuc-Marcov *et al.*, 2006; Wirga and Majtyka, 2013; Sas-Kovács and Sas-Kovács, 2014; Jablonski *et al.*, 2025). At the same time, this was a secondary railway line (C.F.R., 1987, 2012), which likely did not have a significant negative impact, even during its peak traffic. Additionally, compared to roads, railways appear to have a lesser negative impact on soil quality (Sion *et al.*, 2023). It remains to be seen to what extent the renaturalization of the railway and the development of plant communities will cause the disappearance of this population in the course of time, as it could not benefit from the railway closer like other animals (e.g., Leaney, 1983; Higginson and Dover, 2021; Pop *et al.*, 2021a, b; Dylewski *et al.*, 2022, 2025).

Conclusions

The railway *P. muralis* population from Voislova demonstrates the species' capacity to extend its distribution range when corridors with appropriate conditions are available, even if these are represented by anthropogenic structures, such as railways. However, this population, even if it currently seems stable (as evidenced by the presence of juveniles), may be threatened in the future by the advancement of renaturalization along this abandoned railway, which will likely modify at least some of the current habitat conditions.

References

Banerjee, K., Nawani, S., Boruah, B., Habib, B. & Das, A. (2023). A rapid assessment of herpetofaunal diversity and mortality along railway track in Northern Western Ghats, India. *Hamadryad* 40, 11-23.

Bhardwaj, M., Collinson-Jonker, W.J., Thela, S.K., Swanepoel, L.H. & Allin, P. (2025). Mortality on the tracks: spatiotemporal patterns to rail-kill in the Balule Nature Reserve, South Africa. *Wildl. Biol.* 2025, e01167. <https://doi.org/10.1002/wlb3.01167>

Bogdan, H.V., Ilieş, D., Covaciuc-Marcov, S.-D., Cicort-Lucaciuc, A.-S. & Sas, I. (2011). Contributions to the study of the herpetofauna of the western region of the Poiana Ruscă Mountains and its surrounding areas. *North-West. J. Zool.* 7, 125-131.

C.F.R. (1987). Mersul trenurilor de călători 31.05.1987 - 28.05.1988. Societatea Națională a Căilor Ferate Române, Serviciul Mersuri de Tren. Societatea Tipografică Filaret SA, Bucureşti. [in Romanian].

C.F.R. (2012). Mersul trenurilor de călători 11.12.2011 - 8.12.2012. Societatea Națională a Căilor Ferate Române, Serviciul Mersuri de Tren. Societatea Tipografică Filaret SA, București. [in Romanian].

Cogălniceanu, D., Rozylowicz, L., Székely, P., Samoilă, C., Stănescu, F., Tudor, M., Székely, D. & Iosif, R. (2013). Diversity and distribution of reptiles in Romania. *ZooKeys* 296, 49-76.

Covaciu-Marcov, S.-D., Cicort-Lucaciu, A.-S., Sas, I., Bredet, A.M. & Bogdan, H. (2005). Herpetofauna from the basin of Mureș river in Arad county, Romania. *Mediu, cercetare, protecție și gestiune* 5, 147-152.

Covaciu-Marcov, S.-D., Bogdan, H.-V. & Ferentă, S. (2006). Notes regarding the presence of some *Podarcis muralis* (Laurenti 1768) populations on railroads of western Romania. *North-West. J. Zool.* 2, 126-130.

Covaciu-Marcov, S.-D., Cicort-Lucaciu, A.-S., Gaceu, O., Sas, I., Ferentă, S., & Bogdan, H.V. (2009a). The herpetofauna of the south-western part of Mehedinți County. *North-West. J. Zool.* 5(1), 142-164.

Covaciu-Marcov, S.-D., Cicort-Lucaciu, A.-S., Dobre, F., Ferentă, S., Birceanu, M., Mihuț, R. & Strugariu, A. (2009b). The herpetofauna of the Jiului Gorge National Park, Romania. *North-West. J. Zool.* 5 (Supplement 1), S1-S78.

di Ruocco, G., Sicignano, E., Fiore, P. & D'Andria, E. (2017). Sustainable reuse of disused railway. *Procedia Eng.* 180, 1643-1652.
<https://doi.org/10.1016/j.proeng.2017.04.327>

Dylewski, Ł., Tobolka, M., Maćkowiak, Ł., Białas, J.T. & Banaszak-Cibicka, W. (2022). Unused railway lines for conservation of pollinators in the intensively managed agricultural landscape. *J. Environ. Manage.* 304, 114186.
<https://doi.org/10.1016/j.jenvman.2021.114186>

Dylewski, Ł., Maćkowiak, Ł. & Dyderski, M.K. (2025). Abandoned railways support greater functional and phylogenetic plant diversity than adjacent grassy meadows in agricultural landscape. *Land Degrad. Dev.* 36, 614-629.
<https://doi.org/10.1002/lde.5383>

Dudek, K. (2014). Railroads as anthropogenic dispersal corridors. Possible way of the colonization of Poland by a common wall lizard (*Podarcis muralis*, *Lacertidae*). *Ecol. Quest.* 20, 71-73. <https://doi.org/10.12775/EQ.2014.018>

Fuhn, I. & Vancea, S. (1961). "Fauna R.P.R.", Volumul XIV, Fascicola II, Reptilia. București, Romania, Editura Academiei R.P.R. [in Romanian].

García-Mayor, C., Martí, P., Castaño, M. & Bernabeu-Bautista, Á. (2020). The unexploited potential of converting rail track to greenways: the Spanish *Vías Verdes*. *Sustainability* 13, 881. <https://doi.org/10.3390/su12030881>

Gherghel, I. & Tedrow, R. (2019). Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. *Acta Oecol.* 101, 103479. <https://doi.org/10.1016/j.actao.2019.103479>

Gherghel, I., Strugariu, A., Sahlean, T. & Zamfirescu, O. (2009). Anthropogenic impact or anthropogenic accommodation? Distribution range expansion of the common wall lizard (*Podarcis muralis*) by means of artificial habitats in north-eastern limit of its distribution range. *Acta Herpetol.* 4, 183-189.
http://dx.doi.org/10.13128/Acta_Herpetol-3421

Graイトson, E. (2006). Répartition et écologie des reptiles sur le réseau ferroviaire en Wallonie. *Bull. Soc. Herp. Fr.* 120, 15-32.

Heltai, B., Sály, P., Hovács, D., & Kiss, I. (2015). Niche segregation of sand lizard (*Lacerta agilis*) and green lizard (*Lacerta viridis*) in an urban semi-natural habitat. *Amphib.-Reptil.* 36, 389-399. <https://doi.org/10.1163/15685381-00003018>

Heden, S.E. & Heden, D. (1999). Railway-aided dispersal of an introduced *Podarcis muralis* population. *Herpetol. Rev.* 30, 57-58.

Higginson, P. & Dover, J. (2021). Bumblebee abundance and richness along disused railway lines: the impact of track morphology. *J. Insect Conserv.* 25, 481-457. <https://doi.org/10.1007/s10841-021-00345-4>

Iftime, A. (2005). Herpetological observations in the Danube floodplain sector in the Giurgiu county (Romania). *Trav. Mus. Natl. Hist. Nat. «Grigore Antipa»* 48, 339-349.

Iftime, A., & Iftime, O. (2013). Contribution to the knowledge regarding the distribution and ecology of the ehrpetofauna of Țarcu Massif (Southern Carpathians, Romania). *Trav. Mus. Natl. Hist. Nat. «Grigore Antipa»* 56(1), 81-92.

Iftime, A., Gherghel, I. & Ghiurcă, I. (2008). Contribution to the knowledge of the herpetofauna of Bacău County (Romania). *Trav. Mus. Natl. Hist. Nat. «Grigore Antipa»* 51, 243-253.

Ille, G.A. & Dumbravă, A.-R. (2020). A wall lizard on a Danube island - *Podarcis muralis* (Reptilia) in Moldova Veche island, Iron Gates Natural Park, Romania. *Ecol. Balk.* 12, 191-194.

Ionita, M. & Nagavciuc, V. (2025). 2024: The year with too much summer in the eastern part of Europe. *Weather*, <https://doi.org/10.1002/wea.7696>

Jablonski, D., Raffaj, M. & Senko, D. (2025). The Balkans in Central Europe: a case of introduced lineage of *Podarcis muralis* in Slovakia highlighting the impact of international trading and climate change. *Herpetozoa* 38, 97-102. <https://doi.org/10.3897/herpetozoa.38.e139307>

Janssen, A., Staab, M. & Rödel, M.-O. (2025). Home range of Sand Lizards, *Lacerta agilis* (Squamata: Sauria: *Lacertidae*), along railway tracks. *Salamandra* 61, 240-255.

Kovačević, M. & Tvrtković, N. (2025). First evidence of the expansion of *Podarcis siculus* (Reptilia: Squamata: *Lacertidae*) in Pannonian Plain, Croatia. *Nat. Croat.* 34, <https://doi.org/10.20302/NC.2025.34.2>

Kowalik, C., Skawiński, T., Majtyka, M., Kuśmierrek, N., Starzecka, A. & Jablonski, D. (2025). Tracking the origin and current distribution of wall lizards (*Podarcis* spp.) in Poland. *Amphib.-Reptil.* 46, 69-83. <https://doi.org/10.1163/15685381-bja10206>

Krämer, A., Meyer, H. & Buchholz, S. (2025). Habitat suitability of the Sand Lizard (*Lacerta agilis*) at its distribution limit – an analysis based on citizen science data and machine learning. *J. Biogeogr.* 52, e15099. <https://doi.org/10.1111/jbi.15099>

Leaney, R. (1983). An ecological and amenity survey of Norfolk's disused railways. *Trans. Norfolk Norwich Nat. Soc.* 26, 112-137.

Livo, L.J. (2025). Widespread use of highway guardrails and other anthropogenic features by the Colorado Checkered Whiptail (*Aspidoscelis neotesselatus*). *Western Wildlife* 12: 15-18.

Mândruț, O. (2006). *Mic Atlas de Geografie a României*. Bucharest, Romania, Editura Corint. [in Romanian].

Nagavciuc, V., Scholz, P. & Ionita, M. (2022). Hotspots of warm and dry summers in Romania. *Nat. Haz. Earth Sys. Sci.* 22, 1347-1369.
<https://doi.org/10.5194/nhess-22-1347-2022>

Naumov, B., Vacheva, E., Borissov, S., Lukanov, S., Dyugmedzhiev, A. & Lazarkevich, I. (2025). On the origin of the easternmost population of *Podarcis erhardii* (Bedriaga, 1876) (Reptilia: Sauria). *North-West. J. Zool.* 21, 43-49.

Niedrist, A., Kaufmann, P., Tribsch, A., Berninger, U.-G., Leeb, C. & Maletzky, A. (2020). Verbreitung und herkunft allochthoner populationen der mauereidechse (*Podarcis muralis*) entlang des bahnliniennetzes im österreichischen Bundesland Salzburg. *Z. Feldherpetol.* 27, 149-166.

Oskyrko, O., Laakkonen, H., Silva-Rocha, I., Jablonski, D., Marushchak, O., Uller, T. & Carretero, M.A. (2020). The possible origin of the common wall lizard, *Podarcis muralis* (Laurenti, 1768) in Ukraine. *Herpetozoa* 33, 87-93.
<https://doi.org/10.3897/herpetozoa.33.e49683>

Petreanu, I.C. (2023). New data regarding the distribution and status of the herpetofauna from urban and peri-urban habitats in the city of Pitești, Argeș County (Romania). *Trav. Mus. Natl. Hist. Nat. «Grigore Antipa»* 66, 307-335.
<https://doi.org/10.3897/travaux.66.e110472>

Pop, D.-R., Ferentă, S., Maier, A.-R.-M., Cadar, A.-M., Covaciuc-Marcov, S.-D. & Cupșa, D. (2021a). A journey on the railway to nowhere: terrestrial isopod assemblages on an abandoned railway in western Romania. *Spixiana* 44, 135-143.

Pop, D.-R., Maier, A.-R.-M., Cadar, A.-M. & Ferentă, S. (2021b). Preliminary data on terrestrial isopods from some railways in Dobruja, eastern Romania. *Studia UBB Biologia* 66, 85-92. <https://doi.org/10.24193/%20subbbiol.2021.1.03>

Pop, D.-R., Lucaci, B.-I. & Cupșa, D. (2021c). Preliminary data on fauna railway mortality in Dobruja (Romania) indicate a possible impact on spur-thighed tortoise, *Testudo graeca*. *Oltenia. Studii și Comunicări Științele Naturii* 37, 101-106.

Pop, D.-R., Petruș-Vancea, A., Cicort, A., Moș, A. & Cupșa, D. (2023). Road or railway: which is more deadly for the fauna? A puzzling answer from western Romania. *North-West. J. Zool.* 19, 62-70.

Remacle, A. (2018). Premiers résultats d'une opération de sauvegarde d'une population ferroviaire de Lézard des souches, *Lacerta agilis* en Wallonie (Belgique). *Natura Mosana* 71, 21-45.

Santos, J.L., Žagar, A., Drašler, K., Rato, C., Ayres, C., Harris, D.J., Carretero, M., & Salvi, D. (2019). Phylogeographic evidence for multiple long-distance introductions of the common wall lizard associated with human trade and transport. *Amphib.-Reptil.* 40, 121-127.

Sarmento, J. (2002). The geography of “disused” railways: what is happening in Portugal? *Finisterra* 37, 55-71.

Sá-Sousa, P. (1995). The introduced Madeiran lizard, *Lacerta (Teira) dugesii* in Lisbon. *Amphib.-Reptil.* 16, 211-214.

Sas-Kovács, I. & Sas-Kovács, É.-H. (2014). A non-invasive colonist yet: the presence of *Podarcis muralis* in the lowland course of Crișul Repede River (north-western Romania). *North-West. J. Zool.* 10 (Supplement 1), S141-S145.

Schulte, U., Veith, M., Mingo, V., Modica, C. & Hochkirch, A. (2013). Strong genetic differentiation due to multiple founder events during a recent range expansion of an introduced wall lizard population. *Biol. Invasions* 15, 2639-2649. <https://doi.org/10.1007/s10530-013-0480-5>

Sevianu, E., Petrișor, M., Maloș, C.-V. & Hartel, T. (2022). Habitat preferences of the European green lizard *Lacerta viridis* (Laurenti 1768) in a protected area, Romania. *Studia UBB Biologia* 67, 165-176. <https://doi.org/10.24193/subbiol.2022.1.09>

Simbula, G., Luiselli, L., & Vignoli, L. (2019). Lizards and the city: a community study of *Lacertidae* and *Gekkonidae* from an arheological park in Rome. *Zoologischer Anzeiger* 283, 20-26.

Sion, A., Gîrmacea, A.-C., Ene, A. & Timofti, M. (2023). The effect of road and railway traffic on soil quality from the Public Garden of Galati, Romania. *Ann. Univ. Dunărea de Jos Galați* 46, 32-38.

Strijbosch, H., Bonnemayer, J.J.A.M., & Dietvorst, P.J.M. (1980): The northernmost population of *Podarcis muralis* (Lacertilia, *Lacertidae*). *Amphib.-Reptil.* 1, 161-172.

Strugariu, A., Gherghel, I. & Zamfirescu, Ș.R. (2008). Conquering new ground: on the presence of *Podarcis muralis* (Reptilia: *Lacertidae*) in Bucharest, the capital of Romania. *Herpetol. Rom.* 2, 47-50.

Todor, D.-R. & Surd, V. (2013). History and tourist valorization of the Rușchița marble quarry (Caraș-Severin County, Romania). *Studia UBB Geographica* 60, 97-122.

Turnock, D. (2006). Settlement history and sustainability in the Carpathians in the eighteenth and nineteenth centuries. *Rev. Histor. Geogr. Toponomastics* 1, 31-60.

Williams, R.J., Dunn, A.M., da Costa, L.M. & Hassall, C. (2021). Climate and habitat configuration limit range expansion and patterns of dispersal in a non-native lizard. *Ecol. Evol.* 11, 3332-3346. <https://doi.org/10.1002/ece3.7284>

Wirga, M. & Majtyka, T. (2013). Records of the common wall lizard *Podarcis muralis* (Laurenti, 1768) (Squamata: *Lacertidae*) from Poland. *Herpetol. Notes* 6, 421-423.

Wirga, M. & Majtyka, T. (2015). Do climatic requirements explain the northern range of European reptiles? Common wall lizard *Podarcis muralis* (Laur.) (Squamata, *Lacertidae*) as an example. *North-West. J. Zool.* 11, 296-303.

