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Strategies to improve the efficacy of curcumin  
in colorectal cancer treatment 

Alina Sesărman1,2,  and Emilia Licărete1,2 

SUMMARY. Colorectal cancer is a severe type of disease, in which surgical 
therapy complemented by radio- or chemotherapy, is hindered by the 
chemoresistance or secondary effects. Due to the complex and dynamic 
interactions in tumor microenvironment, there is constant need in designing new 
anti-cancer strategies that simultaneously target directly cancer cells development 
and indirectly the pro-tumor processes mediated by the crosstalk of cells in 
tumor milieu. Curcumin, is a natural, biological safe polyphenol, with anti-tumor, 
pro-apoptotic and immunomodulatory actions in a wide spectrum of neoplasia 
including colorectal cancer. Specifically, its ability to orchestrate the processes 
associated with tumorigenesis such as cancer cell proliferation, metabolism, 
angiogenesis, inflammation, oxidative stress and immunosuppression, has been 
largely documented, but insufficiently exploited. However its use in preclinical 
and clinical studies is hindered due to low solubility in aqueous environments, 
poor absorption, instability and high rate of degradation. In this article we 
review the existing data on the anti-tumor actions of curcumin in colorectal 
cancer and potential strategies aiming at enhancing its efficacy in the treatment 
of this disease. Due to its ability to both prevent and treat colorectal cancer, by 
modulating multiple targets, active delivery of curcumin or curcumin analogues 
combined with other chemotherapeutic agents, is a promising therapeutic 
approach for this type of cancer, with minimal toxicity to healthy tissues. 
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Introduction  

Colorectal cancer (CRC) is a severe chronic disease of the digestive tract 
affecting more than 1.2 billion people worldwide. The mechanisms responsible for 
CRC pathogenesis, specifically the neoplastic transformation of normal cells, 
proliferation, new blood vessel formation, invasion and metastasis have been attributed 
to genetic and epigenetic factors, and equally to oxidative stress, inflammatory and 
metabolic processes (Haggar and Boushey, 2009). The therapeutic approach for 
this type of cancer consists in tumor surgical resection complemented by radiotherapy 
and/or systemic administration of cytotoxic agents (5-fluorouracil, oxaliplatin, 
capecitabine), which, unfortunately, due to the lack of specificity for cancer cells, 
have significantly secondary effects. Additionally, some patients develop resistance 
to chemotherapeutic agents among which 5-fluorouracil (5-FU) (Chibaudel et al., 
2012). Co-administration of chemotherapeutic agents with naturally occurring drugs, 
which are pharmacologically safe, may overcome conventional chemotherapy side 
effects (Fantini et al., 2015). In this sense, efficient adjuvant strategies for 
chemotherapy have been ascribed for flavonoids, polyphenols, stilbenes and other 
natural compounds (Aggarwal et al., 2013). Among these, curcumin, an active 
polyphenol isolated from Curcuma longa possesses anti-tumor and immunomodulatory 
actions in gastric, cervical, melanoma, genitourinary, breast, esophagus, lung, 
neurological, hematological and intestinal cancers (Tuorkey, 2014). Curcumin 
pharmacological activities translate in inhibition of processes entertaining cancer 
cells development such as cell proliferation, epigenetic or metabolic processes, 
inflammation, angiogenesis, oxidative stress, invasion and metastasis.  

In this article we review the anti-tumor actions of curcumin in CRC and 
strategies aiming at improving its efficacy in the treatment of this disease. 

Thus, in the first part of this work we describe the main effects of curcumin 
on modulating tumor associated processes such as cell growth, apoptosis, metabolic 
and epigenetic alterations, inflammation, angiogenesis, and oxidative stress, followed 
up by a presentation of therapeutic strategies exploiting these effects. 
 
 

1. Anti-tumor effects of curcumin that modulate tumor growth- associated 
processes 

Modulation of cancer cell growth and apoptosis 

Through its remarkable ability to modulate NF-kB expression and activation 
curcumin attenuates CRC cells (HCT116, HT29, Caco-2) growth by interfering with 
cell cycle regulatory proteins, arresting the cells in the G1, S/G2 or G2/M phase 
(Aggarwal et al., 2003). Subsequentially, curcumin induces apoptosis by inhibiting  
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the expression of anti-apoptotic factors Bcl2, Bcl-xl, stimulating the expression of 
pro-apoptotic proteins: Bax, Bal, Bok, p21, p27 and (but not necessary) tumor 
suppressor p53 (Moos et al., 2004; Shehzad et al., 2013), activating caspase 3 and 
finally inducing the release of cytochrome c from mitochondria (Kunnumakkara et al., 
2008). Additionally, modulation of signaling pathways controlled by EGFR (Chen 
et al., 2006), COX2 (Goel et al., 2001), MAPKs, AMPKs and Wnt/β catenin (Collett 
and Campbell, 2004; Jaiswal et al., 2002) or interfering with the ubiquitin-mediated 
degradation of proteins in the proteasome machinery, are effects described for curcumin 
induced-apoptosis (Hasima and Aggarwal, 2014).  

Modulation of epigenetic events 

Targeting epigenetic events in cancer cells is nowadays a strategy to prevent 
aberrant DNA methylation, histone acetylation/deacetylation, or miRNA expression 
(Lao and Grady, 2011; Vaiopoulos et al., 2014). Curcumin is a recognized inhibitor 
of these epigenetic alterations exerting its anti-cancer effect at least in part through 
epigenetic modulation of global DNA hypomethylation or local DNA-hypermethylation 
in human HCT116 and HT29 CRC cells (Guo et al., 2015b; Link et al., 2013). Aberrant 
acetylation/deacetylation affecting histones or non-histones proteins, occur post-
translationally and have been associated with CRC (Sadoul et al., 2008). Curcumin has 
been found to be a potent inhibitor of the activity of both histone acetyltransferases 
and histone deacetylases (Reuter et al., 2011). miRNAs are short, non-coding RNAs 
regulating post-transcriptionally the gene expression. Their altered expression has been 
associated with cell proliferation, growth, angiogenesis, migration and apoptosis of 
cancer cells. They have both oncogenic or tumor suppressor activities, which can be 
regulated by various agents, offering great anti-tumor therapeutic perspectives. While, 
in some studies, curcumin or its analogues have been demonstrated to downregulate 
oncogenic miRNA21 involved in migration, invasion and proliferation of HCT116 CRC 
cells, in other studies curcumin upregulated the tumor suppressive miRNA34a, 
miRNA27a, thus inhibiting cancer growth in vitro and in vivo (Gandhy et al., 2012; 
Toden et al., 2015a; Toden et al., 2015b).  

Modulation of inflammatory pathways and angiogenesis 

It has long been recognized that targeting tumor-associated inflammation 
and angiogenesis, with different compounds (statins, glucocorticoids, non-steroidal 
anti-inflammatory drugs etc.) is both an attractive and efficient therapeutic anti-
cancer strategy (Banciu, 2007; Rayburn et al., 2009). In CRC tumor inflammation 
is driven mainly by the overexpression of the ubiquitous transcription factor NF-kB  
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(Voboril and Weberova-Voborilova, 2006). Curcumin inhibits the production of 
soluble mediators produced by tumor cells or the tumor-associated cells, entertaining a 
pro-inflammatory milieu (Casey et al., 2015), by inhibiting, in vitro and in vivo, the 
activation by phosphorylation of NF-kB and its downstream inflammatory regulated 
effectors: COX-2, TNF-α, IL-6, PGE2, MMP3, MMP9, ROS, iNOS and most 
importantly VEGF (Aggarwal et al., 2006). VEGF, the major pro-angiogenic factor, is 
synthetized and activated by hypoxia, inflammation, oxidative stress, and other growth 
factors (bFGF, EGF, TGF-B, PDGF-BB). Curcumin has been shown to inhibit the 
activation of HIF-1α, which is constitutively express in hypoxic area of solid tumors, 
therefore inhibiting its main targets- VEGF or bFGF, MMP-1,2,3,9 and TIMP (Yadav 
and Aggarwal, 2011). In melanoma or colon tumors, macrophages have been shown to 
dominate the inflammatory infiltrate, manifesting a dual phenotype, depending on 
the localization and stage (Sica and Mantovani, 2012). They are equally responsible for 
sustaining tumor development by producing IL-1, IL-6, IL-10, TNF-α, IL-21, 
VEGF, TGF-b, MMPs, ROS, NO, or impairing it by phagocytosis of cancer cells 
or production of anti-inflammatory/anti-angiogenic factors (Erreni et al., 2011). 
Curcumin has the ability to reeducate tumor associated macrophages as shown in 
animal models for breast cancer, activating their intrinsic anti-tumor functions (Shiri  
et al., 2015; Zhang et al., 2013). This offers great therapeutic perspectives for CRC 
treatment. 

Modulation of invasion and metastasis  

Cancer cells migration process at secondary sites is tightly controlled by 
growth factors, cytokines and cell adhesion molecules, as well as intracellular 
signaling systems (Chambers et al., 2002). Among these up- regulation of NF-kB 
expression and deregulation of the Wnt/β-catenin signaling pathway, which is a 
major regulator of the cell proliferation, motility and migration, has been suggested to 
be a major cause of malignant dissemination (Chen et al., 2013). Similarly, loss of 
E-cadherin and enhanced activity of matrix metalloproteinases contribute to tumor cells 
ability to invade and metastasize. Curcumin was shown to affect both Wnt signalling 
and cell-cell adhesion pathways (Jaiswal et al., 2002; Narayan, 2004) in human 
CRC cell lines (HCT-116, HT-29, HCT-15, HCC-2998, Colo205) or in animal 
models, inhibiting NF-kB, PKC, RhoA, MMP-2, MMP-9, COX2 gene expressions 
and enhancing E-cadherin expression, thereby preventing cancer cell invasion and 
metastatic potential (Shen et al., 2014). Recently, it has been shown, that curcumin 
exerts anti-metastatic effects by modulating the TGF- β-mediated crosstalk between 
human HCT116 CRC cells and human fibroblasts (MRC-5) in co-culture. TGF-β is 
a major metastatic promoter of cancer cells (Buhrmann et al., 2014).  
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Modulation of reactive oxygen species production 

In cancer cells, low level of ROS foster the survival and maintenance of cellular 
viability and phenotype, whereas aberrant ROS production induces a cellular redox 
imbalance, which causes macromolecular damage and finally, cell death (Martindale 
and Holbrook, 2002). Curcumin functions, at low concentrations as an antioxidant 
(upregulating the antioxidants levels) whereas at higher concentrations curcumin 
manifests prooxidant cytotoxic activity (Das and Vinayak, 2014). This is due to 
curcumin ability to interfere with the expression and activation of different transcription 
factors (NF-kB, AP-1, Nrf-2), their downstream effectors (COX-2, MMPs, iNOS, 
VEGF, PPAR-γ) or signaling pathways (ERK, PI3K/Akt, JNK) (Lin, 2007; Surh, 2003). 
ROS-mediated cytotoxicity of curcumin has been demonstrated in human CRC cell 
lines (Colo205, HCT116, HCT115, HT29) or animal models (Su et al., 2006). 

 
 
Modulation of tumor energy metabolism 

A hallmark of neoplastic transformed cells, is the deregulated energy metabolism. 
Cancer cells consume much higher level of glucose, fatty acids and glutamine to ensure 
their anabolic growth (DeBerardinis et al., 2008). Glycolysis, the main energy furnisher 
in cancer cells, results also in generation of high levels of lactate and H+ which in 
turn acidifies the tumor microenvironment promoting tumor invasion, as well as 
precursors for the synthesis of nucleotides or fatty acid synthesis (Zhao et al., 2013). In 
addition to glucose, cancer cells rely also on glutaminolysis to support their growth, 
as glutamine is an important aminoacid fueling the TCA cycle (Phan et al., 2014). 
Almost all of the glycolysis and TCA cycle participants, have been linked with  
cancer cell growth, invasion, metastasis (Kim and Dang, 2005). In several cancer 
models, the glucose transporters (Glut1, Glut3, Glut4) (Macheda et al., 2005) and/or 
glycolytic enzymes (HKII, PFK, GAPDH, PK, LDH) (Zhang and Yang, 2013) are 
upregulated by cooperation of c-MYC and HIF-1α. MYC-enhanced glutamine 
catabolism is also observed (Kim et al., 2007). Inhibiting key metabolic enzymes 
in CRC cells, would offer great therapeutic perspectives, as a recently published 
study from Wang et al., 2015, describes pro-apoptotic action of curcumin on human 
HCCT116 and HT29 CRC cells, mediated by direct inhibition of the rate limiting 
glycolytic enzyme Hexokinase II in an Akt-dependent manner (Wang et al., 2015). 
Moreover, administration 5-FU and dicholoracetate has already been shown to inhibit 
pyruvate dehydrogenase kinase in vitro, in human CRC cell lines LS174T, LoVo, 
SW620, and HT29 (Tong et al., 2011). It is though tempting to speculate, that a powerful 
anti-cancer effect would result from the co-treatment of cancer cells with curcumin 
and 5-FU, in an attempt to blunt their energy metabolism. However, there should 
be great concern regarding the specificity of such treatments, as glycolysis occurs 
in both neoplastic and healthy cells.  
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2. Strategies aiming at improving the efficacy of curcumin in CRC treatment 

Curcumin administration in combination with cytotoxic agents 
It was demonstrated that the administration of therapeutic agents in combination 

usually engenders a greater anti-tumor effect, over monotherapy. Chemotherapeutics in 
CRC include oxaliplatin, irinotecan, capecitabine and 5-FU. Experimental studies show 
that curcumin is able to synergize with some of these agents, in the anti-tumor actions 
(Patel and Majumdar, 2009). Particularly, enhanced apoptotic effects were observed for 
5-FU who remains the main chemotherapeutic agent for the treatment of both colorectal 
and breast cancer. Its anti-tumor effect in mammalian cells results from its ability to 
block the activity of thymidylate synthase, an enzyme involved in DNA replication and 
repair, leading to inhibition of cellular growth and apoptosis (Longley et al., 2003). 5-FU 
clinical efficiency is limited by its low specificity for the target tumor tissue, the low 
biodisponibility, and especially the accelerated degradation by the liver. Additionally, the 
fact that tumor cells often develop resistance to this chemotherapeutic agent, by activating 
other salvaging signaling pathways, impedes the successful treatment of CRC in suffering 
patients (Malet-Martino and Martino, 2002). Curcumin or its analogues administrated as 
an adjunct to the chemotherapeutic drug 5-FU, offers a promising strategy for the treatment 
of CRC. In vitro studies on human CRC cell lines HCT116 envisage the ability of curcumin 
co-administrated to 5-FU, to reduce the proliferation and viability of cancer cells and to 
induce apoptosis by blocking the expression and activity of the constitutively activated 
NF-kB (Shakibaei et al., 2013). When combined with oxaliplatin, curcumin is able to 
inhibit colon carcinoma in vivo, in nude mice xenografted with human CRC cells 
(LoVO) in an apoptotic manner (Guo et al., 2015a). Multiple targeting of human CRC 
cells HCT116 or HT29, with 5-FU, oxaliplatin and curcumin, resulted in higher cytotoxic 
effects than each of the individual or dual treatments. Altered EGF-R, IGF-1R, Akt signaling 
pathway or COX-2 expression were associated with this cytotoxic action (James et al., 
2015; Shakibaei et al., 2015). Additionally, inclusion of curcumin in conventional therapeutic 
regimens is an effective strategy to reverse the chemoresistance of cancer cells (Goel and 
Aggarwal, 2010). Curcumin reverses the multidrug resistance of CRC cells to vincristine, 
cisplatin, and hydroxycamptothecin in vitro and in vivo (Lu et al., 2013) and enhances 
the chemosensitivity to 5-FU in human CRC cells (HCT116 or HT29) (Shakibaei et al., 
2014; Shakibaei et al., 2015; Toden et al., 2015b). Moreover, when applied on CRC cells 
and MRC-5 fibroblasts co-culture in a monolayer or high density tumor microenvironment 
model in vitro, curcumin and 5-FU were able to suppress cell synergism in tumor 
microenvironment and sensitize the cells to 5-FU (Buhrmann et al., 2014). 

Administration of synthetic curcumin analogues 
Another approach to overcome pharmacological problems for curcumin and 

enhance its efficacy is the design of new compounds which are superior to curcumin in 
the anti-tumor actions in various in vitro and in vivo models for colorectal tumorigenesis, 
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while retaining their non-toxicity to healthy tissues. Dimethoxy-curcumin, diphenyl-
difluoroketone-EF24, hexahydroxycurcumin, difluorinated-curcumin are some examples 
of analogues of curcumin, chemically modified in relation to the parent compound 
(by methylation, reduction, condensation etc), found to affect cancer cells development 
with higher potency than curcumin. In HCT116 CRC cells dimethoxy-curcumin 
inhibited proliferation and induced apoptosis (Tamvakopoulos et al., 2007). Diphenyl-
difluoroketone tested on HCT116 and HT29 CRC cells, manifested anti-tumor 
actions by arresting the cells in G2/M phase of the cell cycle, reducing VEGF and 
COX2 expression, and inducing caspases- mediated apoptosis (in vitro and in vivo) 
(Subramaniam et al., 2008). Another derivative of curcumin-hexahydroxycurcumin 
combined with 5-FU exhibited potent anti-tumor activity on HT29 human CRC cells by 
inhibiting COX2 mRNA and protein expression (Srimuangwong et al., 2012). 
Moreover, difluorinated curcumin (CDF), was shown to inhibit the growth of CRC 
cells resistant to 5-FU and oxaliplatin, due to reduced expression of miR-21, therefore 
sensitizing the cells to these chemotherapeutics (Roy et al., 2013). 

Encapsulation of curcumin in nanoparticles 

Although curcumin has theoretically, a huge therapeutic potential, its low 
solubility in aqueous environments, poor absorption, the high degree of instability 
and hepatic and intestinal rate of degradation limit its uses in preclinical and clinical 
studies (Shehzad et al., 2010). To overcome these issues and to substantially improve 
curcumins biological activity different nanoformulations have been developed with 
aim of passively or actively targeting cancer cells as presented in detail in Table 1. 
For a detailed overview of these formulation please consult (Yallapu et al., 2013). 
For example polymeric nanoparticles, liposomes, cyclodextrines, etc, have been 
ascribed to efficiently incorporate curcumin, stabilize the compound, enhance its 
cellular uptake, and cytotoxicity (Yallapu et al., 2013).  

Moreover, to actively target the tumor cells with curcumin, functionalized 
bioconjugates have been also developed. One such hibrid formulation contains a 
hydrophobic core (poly(D,L-lactide-co-glycolide)(PLGA), a lipid based monolayer 
surrounding the PLGA and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
carboxy (polyethylene glycol) 2000 (DSPE-PEG2000-COOH)-shell. This shell enhances 
the half-time of curcumin and binds a small RNA fragment (Aptamer) directed agains 
adhesion molecules overexpressed on CRC cells. Enhanced cellular uptake and 
cytotoxicity for this nanoformulation has been reported on HT29 human CRC cells 
(Li et al., 2014a). In colorectal cancer, administration of 5-FU as a free drug has a 
poor therapeutic effect due to the lack of the tumor site specificity, rapid metabolization/ 
degradation and associated side effects. Subsequently, many nano-formulations of the 
drug were developed with the aim to shorten the main drawbacks we mentioned as 
shown in Table 1 and described in detail elsewhere (Arias, 2008). 
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Curcumin and 5-FU nanoformulations used in CRC treatment 

Nano-formulations for 
delivering curcumin 

Pre-clinical study References 

Liposomes In vitro, in vivo (Lin et al., 2012;  
Rahman et al., 2012)  

Pluronic/Polycaprolactone 
micelles 

In vitro (Raveendran et al., 2013) 

Polymeric micelles in 
thermosensitive hydrogel 
system 

In vitro, in vivo (Zhang et al., 2015) 

Polymeric nanoparticles In vitro, in vivo (Tan et al., 2014) 
Albumin nanoparticles In vitro (Kim et al., 2011) 
Thiolated chitosan 
nanoparticles 

In vitro, in vivo (Anitha et al., 2014) 

Cyclodextrin complexes In vitro (Yadav et al., 2010) 
Glycerol monooleate and 
pluronic F-127 based 
nanoparticles 

In vitro  (Mohanty and Sahoo, 2010) 

Silica nanoparticles  In vitro (Singh et al., 2015) 
Eudragit S100 nanoparticles In vitro (Prajakta et al., 2009) 
Chitosan and gum arabic 
nanoparticles 

In vitro (Udompornmongkol and Chiang, 
2015) 

PLGA-lecithin-PEG–Apt-
nanoparticles  

(Li et al., 2014a) 

Nano-formulations for 
delivering 5-FU 

Pre-clinical study References 

Enteric-coated chitosan 
polymeric nanoparticles 

In vitro drug  
release studies 

(Tummala et al., 2015) 

Polymeric hydrogels In vitro (Mishra et al., 2014) 
Poly(ε-caprolactone) 
nanoparticles 

In vitro (Ortiz et al., 2012) 

Solid lipid nanoparticles In vitro (Yassin et al., 2010) 
Thiolated Chitosan 
nanoparticles 

In vitro, in vivo (Anitha et al., 2014) 

Hyaluronic acid coupled 
chitosan nanoparticles 

In vitro (Jain and Jain, 2008) 

Chitosan nanoparticles In vitro (Li et al., 2014b) 
Magnetoliposomes In vitro (Clares et al., 2013) 
Layered double hydroxide 
nanoparticles 

In vitro (Chen et al., 2014) 

Table 1.
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Conclusions 

Curcumin is a promising natural compound able to target multiple processes 
associated with CRC. To remarkably improve its efficacy, co-administration with 
chemotherapeutic agents or the use of non-toxic analogues of curcumin, which, as 
described, seem to be superior in action to curcumin, might be a reasonable approach  
for CRC treatment. However, an active targeting strategy, by using functionalized 
nanoformulations, remains until now, the best alternative, to take advantage of curcumin 
cytotoxic effects on cancer cells. To demonstrate the clinical potential of such formulation, 
remains to be properly assessed. 
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