Plant ascorbate peroxidase: molecular phylogeny and role in oxidative stress

Imola Fábián¹, Edina Török¹, Dorina Podar^{2,3} and Gyöngyi Székely^{1,3,4,⊠}

SUMMARY. Oxidative stress appears as a condition in accumulation and detoxification of reactive oxygen species (ROS). ROS are oxygen-derived free radicals, generated predominantly in mitochondria, peroxisomes and chloroplasts, as natural byproducts of the normal cell aerobic metabolism. In spite of their damaging effect, ROS can act as secondary messengers in different cellular processes, including tolerance to environmental stress factors. To neutralize the harmful effects of ROS, plants have evolved enzymatic and non-enzymatic defense systems. In flowering plants, ascorbate peroxidase (APX) is present in eight isoenzyme forms and constitutes an important enzymatic component in scavenging the harmful hydrogen peroxide to water as part of ascorbateglutathione cycle. APX proteins, their roles, in planta expression location and their phylogenetic relationships are presented in the current paper. The phylogenetic analysis performed with the maximum likelihood method which was established for 118 protein sequences of 45 flowering plants. Our phylogenetic analysis revealed diversification of ascorbate peroxidase in angiosperms, and indicates a close relationship of APX1 with APX2, APX3 with APX4 and APX5, and APX6 with sAPX and tAPX proteins. Evolutionary relationships of plant ascorbate peroxidase isoenzymes indicate the evolution of different plant species genome and their phylogenetic affiliation.

Keywords: antioxidative defense system, evolution, osmoprotectants, phylogenetic

¹Babeş-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, 5-7 Clinicilor Str., 400006 Cluj-Napoca, Romania.

²Babeş-Bolyai University, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 Kogălniceanu Str., 400084 Cluj-Napoca, Romania.

³Babeş-Bolyai University, Center of Systems Biology, Biodiversity and Bioresources, 400006 Cluj-Napoca, Clinicilor 5-7, Romania.

⁴Babeş-Bolyai University, Institute for Research - Development - Innovation in Applied Natural Sciences, 30 Fântânele Str., 400294 Cluj-Napoca, Romania.

Corresponding author: Gyöngyi Székely, Babeş-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania, E-mail: gyongyi.szekely@ubbcluj.ro

Introduction

Over the course of their lifetime, plants are exposed to different adverse environmental conditions, like osmotic and oxidative stress. In order to protect themselves against harsh external conditions, plants accumulate a series of protecting compounds, called osmoprotectants, and activate their antioxidative defense system. Appearance of O₂-evolving photosynthetic organisms and aerobic metabolism inevitably generated the occurrence of highly reactive oxygen species (ROS) (Halliwell 2006). During photosynthesis, oxygen is generated in the chloroplasts, and can accept electrons, thus forming O_2^{-1} (superoxide radical). In a multistep reaction, different types of ROS are generated from ground state oxygen i.e. O_2^{-1} (superoxide radical) and leads to the formation of H_2O_2 (hydrogen peroxide), ${}^{1}O_{2}$ (singlet oxygen), HO₂ (perhydroxy radical), HO (hydroxyl radical), ROOH (alkyl hydroperoxide radical), ROO (alkylperoxyl radical) and RO (alkoxyl radical), which are highly reactive molecules causing serious damage to cell components and DNA, conducting to cell death (Gill and Tuteja, 2010). Under steady state conditions, damaging ROS molecules are scavenged by a set of antioxidative defense systems characteristic to chloroplasts, mitochondria and peroxisomes (Fover and Harbinson, 1994; Alscher et al., 1997; Klotz, 2002; Apel and Hirt, 2004; Navrot et al., 2007; Heyno et al., 2011; Sharma et al., 2012), thus maintaining equilibrium between production and scavenging of ROS. This equilibrium can be disturbed by various biotic and abiotic environmental stress factors, such as pathogen attacks, salinity, drought, extreme temperatures, intense light, heavy metals, air pollution, herbicides and mechanical stress. Due to adverse stress factors, the levels of ROS in cells can suddenly increase and cause serious cell structure damages (Elstner, 1991; Malan et al., 1990; Tsugane et al., 1999).

Plant antioxidative defense mechanisms are of two types: enzymatic and non-enzymatic. Enzymatic system includes superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and enzymes of ascorbate-glutathione (AsA-GSH) cycle, such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). Non-enzymatic system comprises of ascorbate (AsA), glutathione (GSH), tocopherols, carotenoids, and flavonoids (Noctor and Foyer, 1998; Sharma *et al.*, 2012) (Fig. 1).

It is important to mention that the osmoprotectant molecule, proline, can act as a non-enzymatic antioxidant needed to counteract the damaging effects of ROS in organisms as microbes, plants and animals (Chen and Dickman, 2005; Székely *et al.*, 2008). Despite their deleterious effect, ROS can act as secondary messengers in different cellular processes, including tolerance to environmental stresses (Desikan *et al.*, 2001; Yan *et al.*, 2007; Sharma *et al.*, 2012). The aim of this article is to present the plant ascorbate peroxidases (APX) (EC 1.11.1.11) phylogeny, as a main participant in neutralizing ROS.

Figure 1. Schematic representation of APX role in ROS formation and detoxification in plants; ROS formation: ${}^{1}O_{2}$: singlet oxygen, O_{2} : molecular oxygen, O_{2}^{-} : superoxide radical, SOD: superoxide dismutase, $H_{2}O_{2}$: hydrogen peroxide, HO: hydroxyl radical. ROS detoxification: Asc: ascorbate, MDHA: monodehydroascorbate; Halliwell-Asada cycle: $H_{2}O_{2}$: hydrogen peroxide, APX: ascorbate peroxidase, $H_{2}O$: water, DHAR: dehydroascorbate reductase, DHA: dehydroascorbate, GSSG: oxidized glutathione, GR: glutathione reductase, GSH: reduced glutathione, NADPH: reduced nicotinamide adenine dinucleotide phosphate, NADP⁺: nicotinamide adenine dinucleotide phosphate (based on Noctor and Foyer, 1998; Sharma *et al.*, 2012).

Role of APX enzyme in antioxidative defense system during stress conditions

In plants, APX is the most distributed antioxidant enzyme and is considered to be a key ROS scavenger enzyme and cell protecting molecule (Orvar and Ellis, 1997). APX, together with catalase, controls the level of H_2O_2 in cells, but the main H_2O_2 scavenging role is thought to belong to APX, which converts H_2O_2 to H_2O in water-water and AsA-GSH (ascorbate glutathione or Halliwell Asada) cycles. APX uses two molecules of AsA to reduce H_2O_2 to water with subsequent generation of two molecules of MDHA (monodehydroascorbate) (Fig. 1).

Based on amino acid sequences, several different isoforms of APX family have been found at different subcellular localization in flowering plants, including chloroplast, mitochondria, peroxisomes and cytosol (Jimenez et al., 1997; Madhusudhan et al., 2003; Sharma and Dubey, 2004; Nakano and Asada, 1987). The organelle APX is efficient in scavenging H_2O_2 produced in the organelles. while cytosolic APX neutralizes H₂O₂ from cytosol, apoplast and that diffused from organelles (Sharma et al., 2012). APX isoforms have a much higher affinity for H₂O₂ compared to CAT and are essential in scavenging ROS during stress conditions (Wang et al., 1999). Many publications reported enhanced level of APX enzyme activity during different abiotic stress conditions, such as salinity, drought, extreme temperatures, heavy metal toxicity and presence of high-light intensities (Boo and Jung, 1999; Sharma and Dubey, 2005a; Sharma and Dubey, 2007; Han et al., 2009; Maheshwari and Dubey, 2009; Hefny and Abdel-Kader, 2009). Begara-Morales et al., (2013) reported the increase of APX enzyme activity in pea plants grown under saline (150 mM NaCl) conditions, Anabaena doliolum also revealed enhanced APX activity during salt stress (Srivastava et al., 2005), water stress induced APX activity in three cultivars of *Phaseolus vulgaris* (Zlatev et al., 2006) and P. asperata (Yang et al., 2008), mild drought stress in rice generated higher chloroplastic-APX activity (Sharma and Dubey, 2005b), Cd stress caused increased APX activity in leaves of Ceratophyllum demersum (Arvind and Prasad, 2003), Brassica juncea (Mobin and Chan, 2007), Triticum aestivum (Khan et al., 2007) and Vigna mungo (Singh et al., 2008). Simonovicova et al., (2004) reported enhancement of APX activity in Hordeum vulgare roots in the presence of Al stress. However, biochemical methods currently used to assess the enzyme APX activity can evaluate only the total APX activity, without distinguishing between the activities of the different APX isoforms.

Materials and methods Data collection

The ascorbate peroxidase protein sequences used in this paper were gathered from the National Centre for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) (McEntyre and Ostell, 2002) database and from arabidopsis.org. The sequences were run through BLAST Sequence Analysis Tool online program (https://blast.ncbi.nlm.nih.gov/ Blast.cgi) in a non-redundant database (McEntyre and Ostell, 2002).

Sequence similarity

APX sequence similarity between *Arabidopsis thaliana* and the studied species was calculated using matGAT software with first gap penalty 12 and expanding gap 2 settings. (Campanella *et al.*, 2003). We collected separately the monocots and dicots APX sequences, the sequences which did not correspond to

homology were not taken into account. Thus, the similarity score was obtained from comparing 118 protein sequence. The scoring matrix used was BLOSUM50, penalties for first gap 16, and extending gap 4. The query monocots sequences were assessed comparing their similarity with *Arabidopsis thaliana* APXs (reference sequences: P82281, Q05431, Q1PER6, Q42564, Q42592, Q42593, Q7XZP5, Q8GY91). The predicted subcellular localization was obtained from http://cello.life.nctu.edu.tw/ (Yu *et al.*, 2004; Yu *et al.*, 2006) with the specific parameters ("Eukaryotes" and "Protein").

Magnoliophyta APX proteins

APX protein forms of 45 species from Magnoliophyta phylum were analyzed and compared to each other. The protein sequences were classified based on Catalogue of Life database (Table 2). Magnoliopsida class analysis indicated several families: Brassicaceae and Capparaceae family (APX1-3 and APX5); Capparaceae and Chenopodiaceae family (APX1-3 and APX6); Cucurbitaceae family (APX1,2 and APX6); Euphorbiaceae family (APX1, APX3, APX6); Fabaceae family (APX2) Malvaceae (APX1-2); Moraceae (APX1), Nelumbonaceae (APX2); Pedaliaceae and Rosaceae family (APX1-3, APX6), Rutaceae (APX1-3); Salicaceae (APX1-2, APX6); Solanaceae (APX1, APX3, APX6), Sterculiaceae family (APX2); Vitaceae family (APX1-2, APX6). From Liliopsida class Poaceae family (APX1-2, APX4, APX6, sAPX, tAPX) was analyzed.

Classification of APX isoforms

In order to fulfil an accurate analysis, a table containing the eight *Arabidopsis thaliana* AtAPX isoforms was created, as a benchmark for all APX proteins of the examined species (Table 1). The APX protein sequences were grouped according to their similarity index. Table 1 shows the APX isoforms according to NCBI database and the same isoforms based on their sequence alignments. The highest APX similarity values were used in our analyses. Similarity values below 50% were not considered.

Phylogenetic tree

For phylogenetic analyses 118 sequences were used: APX1 (25 sequences), APX2 (26 sequences), APX3 (10 sequences), APX4 (11 sequences), APX5 (11 sequences), APX6 (15 sequences), sAPX (10 sequences), tAPX (10 sequences) (Table 1). The protein sequences were sorted and aligned by multiple sequence alignments with ClustalW in MEGA7 program (Kumar *et al.*, 2016) using default settings. The length of aligned protein sequences were 271 amino acids. The phylogenetic tree was generated in PhyML SMS (Guindon *et al.*, 2010; Lefort *et al.*, 2017) maximum likelihood framework program. The phylogenetic reconstruction

was performed assuming a LG +G+I (Le and Gascuel, 2008) evolution model with gamma distributed variation rate across site (G) and a proportion of invariable site (I). The statistics value was based on Shimodaira–Hasegawa [SH] approximate likelihood ratio test [aLRT]. Phylogenetic tree was created by FigTree (v 1.4.0.) program. Main genetic distance between groups and within groups was estimated using p-distance (bootstrap value 1000) by MEGA7 program.

Results and discussion

Table 1 summarizes the APX isoforms, their cellular localization, role and expression location in *A. thaliana*.

Table 1.

APX protein	TAIR accession no.	Cellular localization	Role induced by	<i>In-planta</i> expression location
APX1	At1g07890	Golgi apparatus, chloroplast stroma, cytoplasm, plasma membrane, plasmodesma, cell wall	Cd ion, cytokinin, heat, oxidative stress, reactive oxygen species, salt stress	root, shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen, pollen tube cell,) fruit, seed, guard cell
APX2	At3g09640	cytoplasm	hydrogen peroxide catabolic process, oxidation-reduction process, oxidative stress	leaf
APX3	At4g35000	chloroplast envelope, glyoxysomal membrane, mitochondrion, peroxisomal membrane, plasmodesma, plastid, vacuolar membrane	hydrogen peroxide catabolic process, oxidation-reduction process, cytokinin, oxidative stress	root, shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen, pollen tube cell,) seed, guard cell

APX isoforms and their role in Arabidopsis thaliana according to arabidopsis.org

APX protein	TAIR accession no.	Cellular localization	Role induced by	<i>In-planta</i> expression location
APX4	At4g09010	chloroplast thylakoid lumen, chloroplast thylakoid membrane, cytoplasm, nucleus	oxidation-reduction process, oxidative stress	shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen) seed, guard cell
APX5	At4g35970	integral component of peroxisomal membrane	oxidative stress, hydrogen peroxide removal, hydrogen peroxide catabolic process, oxidation- reduction process	root, shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen) seed, guard cell
APX6	At4g32320	cytosol, extracellular region	hydrogen peroxide catabolic process, oxidative stress, seed germination, seed maturation	root, shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen) seed, guard cell
sAPX	At4g08390	chloroplast stroma, mitochondrion membrane	hydrogen peroxide catabolic process, oxidation-reduction process, cytokinin, oxidative stress	root, shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen) seed, guard cell
tAPX	At1g77490	integral component of chloroplast thylakoid membrane	chloroplast-nucleus signaling pathway, cold acclimation, hydrogen peroxide catabolic process, hydrogen peroxide mediated signaling pathway, oxidation- reduction process, oxidative stress	root, shoot, leaf, flower (flower pedicel, sepal, petal, stamen, pollen) seed, guard cell

PLANT ASCORBATE PEROXIDASES

Plant species and their APX isoforms are visible in figures representing the phylogenetic tree of APX proteins. Table 2 shows the cellular localization of the studied 45 plant species.

Table 2.

	Species name	NCBI	APX	Subcellular
	-	GenBank ID		localization
1	Arabidopsis thaliana	AEE28201.1	APX1	Cytoplasmic
2	Arabidopsis thaliana	Q05431.2	APX1	Cytoplasmic
3	Beta vulgaris subsp. vulgaris	XP_010691257.1	APX1	Cytoplasmic
4	Brachypodium distachyon	XP_003558178.1	APX1	Cytoplasmic
5	Brassica rapa	XP_009118405.1	APX1	Cytoplasmic
6	Citrus maxima	ACM17464.1	APX1	Cytoplasmic
7	Cucumis sativus	AGJ72850.1	APX1	Cytoplasmic
8	Gossypium hirsutum	ABR18607.1	APX1	Cytoplasmic
9	Jatropha curcas	ACV50426.1	APX1	Cytoplasmic
10	Malus domestica	ABP87792.1	APX1	Cytoplasmic
11	Morus notabilis	EXC33221.1	APX1	Cytoplasmic
12	Nicotiana sylvestris	XP_009784425.1	APX1	Cytoplasmic
13	Nicotiana tabacum	AAA86689.1	APX1	Cytoplasmic
14	Nicotiana tomentosiformis	XP_009597491.1	APX1	Cytoplasmic
15	Oryza brachyantha	XP_006649890.1	APX1	Cytoplasmic
16	Oryza sativa Japonica	ABF95353.1	APX1	Cytoplasmic
17	Oryza sativa Japonica	Q10N21.1	APX1	Cytoplasmic
18	Populus euphratica	XP_011008849.1	APX1	Cytoplasmic
19	Prunus mume	XP_008224940.1	APX1	Cytoplasmic
20	Sesamum indicum	XP_011089855.1	APX1	Cytoplasmic
21	Setaria italica	XP_004984819.1	APX1	Cytoplasmic
22	Solanum lycopersicum	AAZ77770.1	APX1	Cytoplasmic
23	Solanum tuberosum	NP_001275066.1	APX1	Cytoplasmic
24	Spinacia oleracea	BAA12890.1	APX1	Cytoplasmic
25	Tarenaya hassleriana	XP_010521780.1	APX1	Cytoplasmic
26	Vitis vinifera	NP_001267988.1	APX1	Cytoplasmic
27	Zea mays	NP_001152249.1	APX1	Cytoplasmic
28	Aegilops tauschii	EMT09178.1	APX2	Cytoplasmic
29	Arabidopsis thaliana	AEE74792.1	APX2	Cytoplasmic
30	Arabidopsis thaliana	Q1PER6.3	APX2	Cytoplasmic
31	Beta vulgaris subsp. vulgaris	XP_010696372.1	APX2	Cytoplasmic
32	Brachypodium distachyon	XP_003562395.1	APX2	Cytoplasmic
33	Brassica rapa	XP_009123280.2	APX2	Cytoplasmic
34	Brassica rapa subsp. oleifera	CCC55736.1	APX2	Cytoplasmic
35	Camelina sativa	XP 010486536.1	APX2	Cytoplasmic
36	Citrus maxima	ACM17463.1	APX2	Cytoplasmic
37	Citrus sinensis	XP_006480586.1	APX2	Cytoplasmic
38	<i>Fragaria vesca</i> subsp. <i>vesca</i>	XP_004302839.1	APX2	Cytoplasmic
39	Glycine max	AAB01221.1	APX2	Cytoplasmic
40	Gossypium arboreum	KHG05754.1	APX2	Cytoplasmic
41	Malus domestica	XP 008350397.1	APX2	Cytoplasmic

List of analyzed species, APX isoforms and their subcellular localization

PLANT ASCORBATE PEROXIDASES

	Species name	NCBI	APX	Subcellular
	•	GenBank ID		localization
42	Momordica charantia	AIE12238.1	APX2	Cytoplasmic
43	Nelumbo nucifera	XP_010253495.1	APX2	Cytoplasmic
44	Oryza brachyantha	XP_006658179.1	APX2	Cytoplasmic
45	Oryza sativa Japonica	Q9FE01.1	APX2	Cytoplasmic
46	Populus euphratica	XP_011048406.1	APX2	Cytoplasmic
47	Prunus mume	XP_008239139.1	APX2	Cytoplasmic
48	Sesamum indicum	XP_011094725.1	APX2	Cytoplasmic
49	Setaria italica	XP_004958804.1	APX2	Cytoplasmic
50	Tarenaya hassleriana	XP_010543364.1	APX2	Cytoplasmic
51	Theobroma cacao	EOY07733.1	APX2	Cytoplasmic
52	Theobroma cacao	XP_007016653.2	APX2	Cytoplasmic
53	Vitis vinifera	XP_010651099.1	APX2	Cytoplasmic
54	Zea mays	NP_001105500.2	APX2	Cytoplasmic
55	Arabidopsis lyrata subsp. lyrata	XP_020874660.1	APX3	Cytoplasmic
56	Arabidopsis thaliana	Q42564.1	APX3	Cytoplasmic
57	Beta vulgaris subsp. vulgaris	XP 010679905.1	APX3	Mitochondrial
58	Brassica rapa	XP_009138334.1	APX3	Cytoplasmic
59	Citrus sinensis	XP 006486751.1	APX3	Cytoplasmic
60	Nicotiana tomentosiformis	XP_009618135.1	APX3	Cytoplasmic
61	Oryza sativa Japonica	Q0JEQ2.1	APX3	Cytoplasmic
62	Ricinus communis	XP_002530823.1	APX3	Cytoplasmic
63	Sesamum indicum	XP_011088597.1	APX3	Cytoplasmic
64	Solanum tuberosum	XP_006359692.1	APX3	Cytoplasmic
65	Vitis vinifera	XP_002278281.1	APX3	Cytoplasmic
66	Aegilops tauschii	EMT10887.1	APX4	Cytoplasmic
67	Aegilops tauschii subsp. tauschii	XP_020163634.1	APX4	Cytoplasmic
68	Arabidopsis thaliana	P82281.2	APX4	Chloroplast
69	Brachypodium distachyon	XP_003574893.1	APX4	Cytoplasmic
70	Hordeum vulgare subsp. vulgare	BAB62533.1	APX4	Cytoplasmic
71	Oryza brachyantha	XP_006659666.1	APX4	Chloroplast
72	Oryza sativa Japonica	Q6ZJJ1.1	APX4	Chloroplast
73	Oryza sativa Japonica	XP_015650808.1	APX4	Chloroplast
74	Setaria italica	XP_004974146.1	APX4	Cytoplasmic
75	Sorghum bicolor	XP_002444620.1	APX4	Cytoplasmic
76	Stipa purpurea	AJF34885.1	APX4	Cytoplasmic
77	Zea mays	NP_001132505.1	APX4	Cytoplasmic
78	Arabidopsis lyrata subsp. lyrata	XP_002869048.1	APX5	Cytoplasmic
79	Arabidopsis thaliana	Q7XZP5.2	APX5	Cytoplasmic
80	Arabidopsis thaliana	NP_195321.1	APX5	Cytoplasmic
81	Arabidopsis thaliana	AAP72144.1	APX5	Cytoplasmic
82	Brassica napus	XP_013743324.1	APX5	Cytoplasmic
83	Brassica rapa	XP_009148286.2	APX5	Cytoplasmic
84	Camelina sativa	XP_010432206.1	APX5	Cytoplasmic
85	Camelina sativa	XP 010446847.1	APX5	Cytoplasmic

I. FÁBIÁN	E.	TÖRÖK,	D.	PODAR,	G.	SZÉKELY
-----------	----	--------	----	--------	----	---------

	Species name	NCBI	APX	Subcellular
		GenBank ID		localization
86	Capsella rubella	XP_006285911.1	APX5	Nuclear
87	Eutrema salsugineum	XP_006412038.1	APX5	Nuclear
88	Oryza sativa Japonica	P0C0L0.1	APX5	Chloroplast
89	Tarenaya hassleriana	XP_010526807.1	APX5	Cytoplasmic
90	Arabidopsis thaliana	Q8GY91.1	APX6	Chloroplast
91	Beta vulgaris subsp. vulgaris	XP_010674956.1	APX6	Chloroplast
92	Brachypodium distachyon	XP_003578843.1	APX6	Mitochondrial
93	Cucumis sativus	XP_004149799.1	APX6	Chloroplast
94	Fragaria vesca subsp. vesca	XP_004290885.1	APX6	Chloroplast
95	Jatropha curcas	XP_012078304.1	APX6	Chloroplast
96	Malus domestica	XP_008365199.2	APX6	Chloroplast
97	Nicotiana sylvestris	XP_009784836.1	APX6	Chloroplast
98	Nicotiana tomentosiformis	XP_009629390.1	APX6	Chloroplast
99	Oryza sativa Japonica	POCOL1.1	APX6	Mitochondrial
100	Oryza sativa Japonica	ABA96617.1	APX6	Mitochondrial
101	Populus euphratica	XP 010999402.1	APX6	Chloroplast
102	Prunus mume	XP_008219620.1	APX6	Chloroplast
103	Sesamum indicum	XP_011074839.1	APX6	Chloroplast
104	Setaria italica	XP_004977222.1	APX6	Mitochondrial
105	Solanum lycopersicum	NP_001234631.2	APX6	Chloroplast
106	Vitis vinifera	XP_003634424.1	APX6	Chloroplast
107	Aegilops tauschii subsp. tauschii	XP_020162413.1	sAPX	Chloroplast
108	Arabidopsis thaliana	Q42592.2	sAPX	Chloroplast
109	Brachypodium distachyon	XP 003579783.1	sAPX	Chloroplast
110	Hordeum vulgare subsp. vulgare	BAJ97403.1	sAPX	Chloroplast
111	Oryza brachyantha	XP 006652305.1	sAPX	Chloroplast
112	Oryza sativa	CAH67301.1	sAPX	Chloroplast
113	Oryza sativa Indica Group	EEC77311.1	sAPX	Chloroplast
114	Oryza sativa Japonica	Q7XJ02.1	sAPX	Chloroplast
115	Oryza sativa Japonica	XP 015635863.1	sAPX	Chloroplast
116	Setaria italica	XP_004975656.1	sAPX	Mitochondrial
117	Sorghum bicolor	XP_021319656.1	sAPX	Chloroplast
118	Aegilops tauschii subsp. tauschii	XP_020185648.1	tAPX	Chloroplast
119	Arabidopsis thaliana	Q42593.2	tAPX	Chloroplast
120	Brachypodium distachyon	XP 010235542.1	tAPX	Chloroplast
121	Oryza brachyantha	XP_006647364.1	tAPX	Chloroplast
122	Oryza sativa Japonica	Q69SV0.2	tAPX	Chloroplast
123	Saccharum hybrid cultivar	AGD80597.1	tAPX	Chloroplast
124	Setaria italica	XP 004952823.1	tAPX	Chloroplast
125	Sorghum bicolor	XP 021316117.1	tAPX	Chloroplast
126	Triticum aestivum	AAS80158.1	tAPX	Chloroplast
127	Triticum urartu	EMS46926.1	tAPX	Chloroplast

Phylogeny of APX isoforms out of 45 flowering plant species is represented by Figure 2.

The APX isoforms constitute a monophyletic group. The APX phylogenetic tree has split three branches with highly supported values (1 SH). Red band indicates the phylogenesis of APX1 and APX2 proteins, with highest number of species. These groups APX1 and APX2 sequences are mixed. The first lineage (0.677 SH-like support value) consists of species like Vitaceae, Pedaliaceae, Brassicaceae, Capparaceae, Malvaceae, Chenopodiaceae, Rutaceae, Rosaceae, Salicaceae families. Rutaceae family members has sister groups with Malvaceae (APX2), Capparaceae Chenopodiaceae (APX2), (APX2) and Brassicaceae (APX2) family species. The next lineage, Liliopsida class, consists of Poaceae family with APX1-2 groups, and they are sister groups (0.872 SH). Inside the Poaceae family there is a split between APX1 and APX2. The next split is the Malvales class with the highest confidence interval (0.780 SH). In close relation (0.8 SH) appears the Rosaceae with Moraceae and Cucurbitaceae family species. These groups are sister groups (0.826 SH) with Chenopodiaceae, Solanaceae, Brassicaceae, Capparaceae, Pedaliaceae family species. The second big branching are APX3, 4, 5 groups (1SH). The light green band shows the APX3 as a wellsupported clade (0.895 SH) with three divergences: Chenopodiaceae, Brassicaceae and the close related Solanaceae, Vitaceae, Euphorbiaceae, Rutaceae, Pedaliaceae (0.895 SH) families. Another well supported clade is the APX4 marked with dark blue band, which comprise Poaceae family species and is separated in two sister groups with the highest divergence (1 SH). A well separated group is the APX5, colored with light green band, and consists the Capparaceae family and a highly separated Brassicaceae family species (0.998 SH). The last big branching is APX6, sAPX and tAPX groups (1 SH). APX6 is marked with light blue and is a well separated clade. The first clade is Liliopsida class (0.97 SH) with a well-supported clade, Poaceae family members (0.966 SH). The next branch is composed of Chenopodiaceae, Euphorbiaceae, Vitaceae, Rosaceae, Salicaceae, Pedaliaceae, Solanaceae, Cucurbitaceae families. The Vitaceae and Cucurbitaceae generates a sibling group and are consisted of one sister group, the Rosaceae family species. sAPX appears as a well-supported clade marked with lilac band. sAPX of Oryza genus are weakly supported. The vellow tAPX are well isolated group (1 SH), with two sister clades: Oryza genus and the Poaceae family species (0.375 SH). However, the low support of nodes on the phylogenetic tree shows that the relationship between the species is not clearly resolved yet. The high level of differentiation of APX groups is also confirmed by the high p-distance value expressed as a percentage value and appears as a high level of divergence between groups (Table 3).

I. FÁBIÁN, E. TÖRÖK, D. PODAR, G. SZÉKELY

Figure 2. PhyML phylogenetic tree of 45 flowering plant species APX proteins; APX1 and APX2 are marked with red band, APX3 with light green band, APX4 with dark blue band, APX5 with light green band, APX6 with light blue band, sAPX with lilac band and tAPX with yellow band.

	Aver	age genetic	e distance b	between AP	X groups (%	(0)	Table 3.
Groups name	APX1	APX2	APX3	APX4	APX5	APX6	sAPX
APX2	16.7						
APX3	33.1	33.2					
APX4	33.6	33.4	19.1				
APX5	38.7	38.3	26.8	31.8			
APX6	50.7	50.6	46.2	44.9	51.7		
sAPX	49.6	49.3	45.5	45.3	50.5	16.4	
tAPX	50.3	50.4	46.3	45.5	52.4	16.0	12.2

The genetic distance analyses within groups were also analyzed. The groups APX1-2-3 and APX6 revealed the higher genetic distance, exceeding the value of 1.1% (Table 4).

Table 4.

Groups name	Genetic distance				
APX1	1.59				
APX2	1.54				
APX3	1.19				
APX4	0.66				
APX5	0.90				
APX6	1.26				
sAPX	0.58				
tAPX	0.55				

Average genetic distance within the APX groups (%)

Our cellular localization analysis indicated that APX1 and APX2 are localized in cytoplasm, APX3, APX4 and APX5 are localized in mitochondria, chloroplasts, nucleus and cytoplasm, APX6, sAPX and tAPX are mitochondrial and chloroplastic. The result of phylogeny reconstruction shows the relationship between the APX isoforms which may be influenced by the cellular localization also.

Conclusions

Ascorbate peroxidase is an essential enzyme in detoxifying the extremely harmful hydrogen peroxide, therefore in plant oxidative stress response. Molecular phylogeny analysis of several plant APX proteins has been presented in this study, in order to investigate the molecular manner of evolution of ascorbate peroxidase isoenzymes family in angiosperms. Evolutionary analysis of ascorbate peroxidase isoenzymes of different plant species, showed that APX is a monophyletic group, probably evolved from a single ancestor, where some isoformes are close related, some are not. Our phylogenetic analysis points close relationships between APX1 and APX2, between APX3, APX4 and APX5, and between APX6, sAPX and tAPX proteins in angiosperms. With an essential role in detoxifying processes of the cell, understanding molecular mechanisms of stress tolerance and phylogeny of APX, can serve to generate an efficient drug for prevention of several diseases in plants, animals and humans caused by severely harmful oxidative stress. Gathering information about molecular function of APX isoforms to scavenge ROS in different cellular compartments, could contribute to stress responsive gene engineering in order to improve crop tolerance against adverse environmental conditions.

Acknowledgement. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-0831.

REFERENCES

- Alscher, R. G., Donahue, H., Cramer, C. L. (1997) Reactive oxygen species and antioxidants: relationships in green cells, *Physiol. Plant.*, **100**:224–233
- Apel, K., Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant. Biol., 55:373–399
- Arvind, P., Prasad, M. N. V. (2003) Zinc alleviates cadmium-induced oxidative stress in *Ceratophyllum demersum* L: a free-floating freshwater macrophyte, *Plant. Physiol. Biochem.*, 41:391-397
- Begara-Morales, J. C., Sánchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Pérez, C., López-Jaramillo, J., Padilla, M. N., Carreras, A., Corpas, F. J., Barroso, J. B. (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and Snitrosylation, J. Exp. Bot., 65:527-538
- Boo, Y. C., Yung J. (1999) Water deficit-induced oxidative stress and antioxidant defences in rice plants, J. Plant Physiol., 155:255-261
- Campanella, J. J., Bitincka, L., Smalley, J. (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences, *BMC bioinformatics* 4:1-29
- Chen, C., Dickman, M. B. (2005) Proline suppresses apoptosis in the fungal pathogen *Colletotrichum trifolii, Proc. Natl. Acad. Sci.*, **102**:3459-3464
- Desikan, R., A-H-Mackerness, S. S., Hancock, J. T., Neill, S. J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress, *Plant Physiol.*, **127**:159–172
- Elstner, E. F. (1991) Mechanisms of oxygen activation in different compartments of plant cells, In: Active Oxygen/Oxidative Stress in Plant Metabolics, Pelland, E.J., Steffen, K.L. (eds.), MD Rockville: American Society of Plant Physiologists, pp. 13-25
- Foyer, C. H., Harbinson, J. (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: *Causes* of *photo-oxidative stress and amelioration of defense systems in plants,* Foyer, C.H., Mullineaux, P.M. (eds.), CRC, Boca-Raton, pp. 1-42
- Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, *Plant Physiol. Bioch.*, **48**:909-930
- Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, *Syst. Bio.*, **59**:307-321
- Halliwell, B. (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, *Plant Physiol.*, **141**:312–322
- Han, C., Liu, Q., Yang, Y. (2009) Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of *Picea asperata* seedlings, *Plant Growth Regul.*, 58:153–162
- Hefny, M., Abdel-Kader, D. Z. (2009) Antioxidant-enzyme system as selection criteria for salt tolerance in forage sorghum genotypes (*Sorghum bicolor L. Moench*). In: *Salinity and Water Stress*, Ashraf, M., Ozturk, M., Athar, H.R. (eds.), editors. The Netherlands: Springer, pp. 25-36

- Heyno, E., Mary, V., Schopfer, P., Krieger-Liszkay, A. (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes, *Planta*, 234:35–45
- Jimenez, A., Hernandez, J. A., del Rio, L. A., Sevilla, F. (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. *Plant Phys.*, 114:275–284
- Khan, N. A., Samiullah, Singh S., Nazar, R. (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (*Triticum aestivum*) cultivars differing in yield potential under cadmium stress, *J. Agron. Crop. Sci.*, **193**:435-444
- Klotz, L. O. (2002) Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen, *Biol. Chem.*, **383**:443–456
- Kumar, S., Stecher, G., Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, *Mol. Biol. Evol.*, **33**:1870-1874
- Le, S. Q., Gascuel, O. (2008) An improved general amino acid replacement matrix, *Mol. Biol. Evol.*, **25**:1307-1320
- Lefort, V., Longueville, J. E., Gascuel, O. (2017) SMS: Smart Model Selection in PhyML, *Mol. Biol. Evol.*, 34:2422-2424
- Madhusudhan, R., Ishikawa, T., Sawa, Y., Shigeoka, S., Shibata, H. (2003) Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells. *Physiol. Plant.*, 117:550–557
- Maheshwari, R., Dubey, R. S. (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings, *Plant. Growth. Regul.*, 59:37–49
- Malan, C., Gregling, M. M., Gressel, J. (1990) Correlation between CuZn superoxide dismutase and glutathione reductase and environmental and xenobiotic stress tolerance in maize inbreeds, *Plant Sci.*, 69:157–166
- McEntyre, J., Ostell, J. (2002) The NCBI handbook. Bethesda (MD): National Center for Biotechnology Information (US)
- Mobin, M., Khan, N. A. (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (*Brassica juncea*) cultivars differing in photosynthetic capacity subjected to cadmium stress, *J. Plant Physiol.*, **164**:601-610
- Nakano, Y., Asada, K. (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical, *Plant Cell Physiol.*, 28:131–140
- Navrot, N., Rouhier, N., Gelhaye, E., Jaquot, J. P. (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria, *Physiol. Plant.*, **129**: 185-195
- Noctor, G., Foyer, C. H. (1998) Ascorbate and glutathione: keeping active oxygen under control, *Annu. Rev. Plant. Biol.*, **49**:249–279
- Orvar, B. L., Ellis, B. E. (1997) Des plants de tabac transgéniques exprimant un ARN antisens pour ascorbate peroxydase cytosolique montrent une susceptibilité accrue aux blessures d'ozone [Transgenic tobacco plants expressing an antisense RNA to cytosolic ascorbate peroxidase show increased susceptibility to ozone injury]. L'usine J., 11:1297-1305
- Sharma, P., Dubey, R. S. (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes, *Plant Sci.*, 167:541–550

- Sharma, P., Dubey, R. S. (2005a) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant, *Journal of Plant Phys.*, 162:854-864
- Sharma, P., Dubey, R. S. (2005b) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings, *Plant Growth Regul.*, 46:209–221
- Sharma, P., Dubey, R. S. (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum, *Plant Cell Rep.*, 26:2027–2038
- Sharma, P., Jha, B., Dubey, R. S., Pessarakli, M. (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions, J. Bot., doi:10.1155/2012/217037
- Simonovicova, M., Tamás, L., Huttová, J., Mistrík, I. (2004) Effect of aluminium on oxidative stress related enzymes activities in barley roots, *Biol. Plant.*, **48**:261-266
- Singh, S., Khan, N. A., Nazar, R., Anjum, N. A. (2008) Photosynthetic traits and activities of antioxidant enzymes in blackgram (*Vigna mungo* L. Hepper) under cadmium stress, *American J. Plant Phys.*, 3:25-32
- Srivastava, A. K., Bhargava. P., Rai, L. C. (2005) Salinity and copper-induced oxidative damage and changes in antioxidative defense system of *Anabaena doliolum*, *World J. Microbiol. Biotechnol.*, 22:1291-1298
- Székely, G., Ábrahám, E., Cséplő, Á., Rigó, G., Zsigmond, L., Csiszár, J., Ayaydin, F., Strizhov, N., Jásik, J., Schmelzer, E., Koncz, C., Szabados, L. (2008) Duplicated P5CS genes of *Arabidopsis* play distinct roles in stress regulation and developmental control of proline biosynthesis, *Plant J.*, 53:11-28
- Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., Kobayashi, H. (1999) A recessive *Arabidopsis* mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification, *Plant Cell*, **11**:1195–1206
- Wang, J., Zhang, H., Allen, R. D. (1999) Overexpression of an *Arabidopsis* peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress, *Plant Cell Physiol.*, 40:725–732
- Yan, J., Tsuichihara, N., Etoh, T., Iwai, S. (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening, *Plant Cell Environ.*, 30:1320–1325
- Yang, Y., Han, C., Liu, Q., Lin, B., Wang, J. (2008) Effect of drought and low light on growth and enzymatic antioxidant system of *Picea asperata* seedlings, *Acta Physiol. Plant.*, **30**:433-440
- Yu, C. S., Lin, C. J., Hwang, J. K. (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions, *Protein Science*, 13:1402-1406
- Yu, C. S., Chen, Y. C., Lu, C. H., Hwang, J. K. (2006) Prediction of protein subcellular localization, *Proteins: Structure, Function and Bioinformatics*, 64:643-651
- Zhengiang, L., Liu, D., Shenkui, L. (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic *Arabidopsis*, *Plant Cell Rep.*, 26:1909-1917
- Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., Yordanov, I. T. (2006) Comparison of resistance to drought of three bean cultivars, *Biol. Plant.*, 50:389-394.