THE "ZIG-ZAG" CYLINDER RULE

MIRCEA V. DIUDEA^a

^a Faculty of Chemistry and Chemical Engineering Babes-Bolyai University, 3400 Cluj, Romania

ABSTRACT. Spectral data revealed some cluster properties of tubulenes. The "zig-zag" cylinder rule on the π -electronic structure states that properly closed shell exists in two complementary series of fullerenes derived from the 13k cluster, k = 4m; 4m+2, m = 1,2,..., by adding a 3kn, n = 1,2,..., nanotube distancer between the two zig-zag ended caps. Semiempirical calculations support this finding.

INTRODUCTION

A fullerene is, according to a classical definition, an all-carbon molecule consisting entirely of pentagons (exactly 12) and hexagons (*N*/2-10).¹ Besides the well known near-spherical fullerenes, open ended nanotubes, capped tubules and tori have aroused both theoretical and experimental interest.²⁻¹⁰ Non-classical fullerene extensions to include rings of other sizes have been considered.^{11,12} Multi elemental large cages have also been studied.¹³

In simple π -only Hückel theory, the energy of the i^{th} molecular orbital $E_i = \alpha + \lambda_i \beta$ is calculated on the ground of the adjacency matrix associated to the molecular hydrogen depleted graph. Systematic studies on this matrix and their eigenvalue spectra (*i.e.*, the decreasing sequence of eigenvalues λ_i), provided some magic number rules for the stability of molecules, such as the oldest Hückel¹⁴ 4n +2 rule for aromatic rings and the more recent $60 + 6m \ (m \neq 1)$ leapfrog rule¹⁵ for the properly closed fullerenes (see also ref. 16).

The π -electronic shells of neutral fullerenes are classified, function of their eigenvalue spectra, as:¹⁷ (i) *properly closed*, PC, when $\lambda_{N/2} > 0 \ge \lambda_{N/2+1}$; (ii) *pseudo-closed*, PSC, in case $\lambda_{N/2} > \lambda_{N/2+1} > 0$; (iii) *meta-closed*, MC, with $0 \ge \lambda_{N/2} > \lambda_{N/2+1}$ and (iv) *open*, OP, when the $N/2^{th}$ (HOMO) and $N/2+1^{th}$ (LUMO) molecular orbitals are degenerate, $\lambda_{N/2} = \lambda_{N/2+1}$. The bandgap is taken as the absolute value of the difference E_{HOMO} - E_{LUMO} . The most frequent case is that of the pseudo-closed shell, since the number of positive eigenvalues is, in general, larger than that of the negative ones, $n_+ \ge n_-$.¹⁸

The other rule predicting closed-shell fullerenes is the *cylinder rule*. ^{19,20} Fullerenes with *k*-fold cylindrical symmetry, of general formula $C_{N,k \cdot V[2k,n]\cdot [6]}$, have a closed shell at each nuclearity N=2k(7+3m), m=0,1,2,..., (k=4 to 7 in this paper). These cages have a non-degenerate non-bonding orbital (NBO) LUMO separated by a gap from HOMO; in this case $n_+=1+n$ -. Exceptions exist, e.g., the first term of series k=6, $C_{72,6 \cdot V[2k,1]\cdot [6]}$, has LUMO triply degenerate, and the first term of series k=7, $C_{84,7 \cdot V[2k,1]\cdot [6]}$, has its NBO not the LUMO (actually is $\lambda_{N/2+3}$).

The cylinder rule, better called the "armchair" cylinder rule, can equivalently be written, in distancing tube dimension, as: n = 1 + 3m.

Recall that, our notations for nanotubes $TUVC_6[c,n]$ and $TUHC_6[c,n]$ correspond to the "armchair" (c/2, c/2) and "zig-zag" (c/2,0), respectively.

This paper describes a further investigation of fullerenes with the aim of finding some novel rules of their electronic stability.

TUBULENES BY "ZIG-ZAG" NANOTUBE DISTANCER

A spherical fullerene, say C_{60} (I_h), can provide a cap suitable for joining an armchair nanotube (i.e., a TUVC₆); the cap, having a k-fold polar ring, will be denoted by $C_{N,k-V[2k,0]}$ with N being the number of atoms in the parent fullerene. In a fullerene cluster the polar ring can vary, in our work most often k = 4, 5, 6, 7 (with the main term at k = 5). The cap $C_{N,k-V[2k,0]}$ can be used in generating a cluster of tubulenes by using a TUV distancer. The procedure is illustrated in Figure 1. This is the cluster $C_{N,k-V[2k,n]-[6]}$, obeying the armchair cylinder rule (initially defined for k = 5; 6). ¹⁹

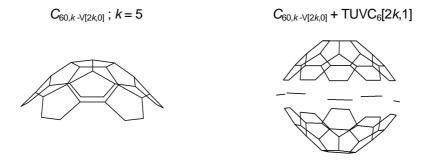


Figure 1. "Armchair" tubulene construction

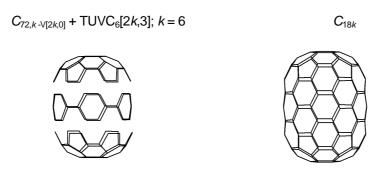
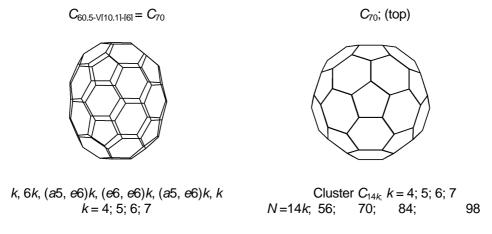


Figure 1. (continued)

The first term of the sub-cluster $C_{60,5\text{-V}[10,1]\text{-}[6]}$ is just the isolated fullerene C_{70} (see below). Its topology is given as the spiral code. ^{21,22} We amended this code by specifications for the mode of inserting the new polygon, either by an edge (*e*) or by an angle (*a*).



A different cap, denoted $C_{N,k+I[2k,0]}$, is that favoring the coupling with a zigzag nanotube (*i.e.*, TUHC₆).²⁰ Figure 2 gives such an example.

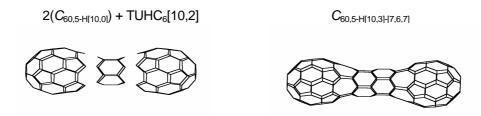


Figure 2. "Zig-zag" tubulene construction

A tubulene $C_{N,k-V[2k,6]-[6]}$ can be viewed as originating in the coalescence product of two spherical fullerenes, namely the $C_{N,k-H[2k,1]-[7]}$, from which it results by a series of Stone-Wales^{23,24} edge flipping. Similar coalescence reactions between spherical cages and nanotubes have been considered.²⁵

Resuming to the nomenclature, the C letter (*i.e.*, cage) is followed by the number of atoms N of the parent fullerene, having a k-fold polar ring, the cap being attached to a V/H[c,n] tube (with a cross-section of c atoms, and n atom rows distancing the two caps; n=0 for the cap, only). The numbers in the last brackets denote the tiling polygons in the region between the two caps.

A quite different cap $C_{N,k+I[c,0]}$ is provided by the isolated fullerene C_{78} , the two of its IP (*i.e.*, isolated pentagon) isomers being given below.

C₇₈a; C_S



k, (5, 6)k/2, (a6, a6, e5)k/2, (a6)k, (e5, a6, a6)k/2, (6, 5)k/2, k k=6

 $C_{78}c; C_1$

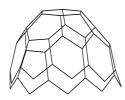
Cluster C_{13k} ; k = 4; 6; 8; 10

$$N = 13k$$
; 52;

130

The formal building of the related tubulenes is illustrated in Figure 3.

$$C_{78,k-H[3k,0]}$$
; $k=6$



 $C_{78,k+1[3k,0]} + TUHC_6[3k,2]$

 $C_{78,k-H[3k,0]}$ + TUHC₆[3k,1]

 $C_{78,k-H[3k,2]-[6]} = C_{19k}; k = 6$

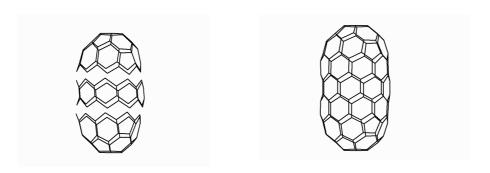


Figure 3. "Zig-zag" tubulenes derived from C₇₈

SPECTRAL PROPERTIES OF THE NOVEL CLUSTER

The zig-zag tubulenes derived from the cluster C_{13k} form a properly closed shell tubulene cluster with the general formula $C_{13k,k+1[3k,n]-[6]}$ and the following construction N=13k+3kn; k=4m+2z; m=1,2,...; z=0,1; n=1,2,.... It shows the same bandgap for a given z value at each positive n. The last parameter is just the n-dimension of the distancing tube and it discriminates between the twin odd and even sub-clusters (see Figures 4 and 5).

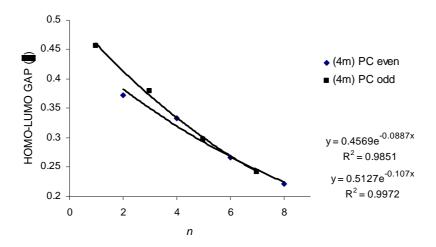


Figure 4. The plot of the spectral gap vs. n, in the series k = 4m

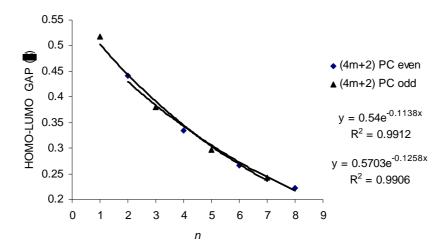


Figure 5. The plot of the spectral gap vs. n, in the series k = 4m+2

In the opposite to the 1st (armchair) cylinder rule, the terms for n = 0 do not (properly) belong to the new cluster. In the series k = 4m, LUMO is an NBO (not encountered at higher n-values) while in the series k = 4m+2, the gaps are different for different m-values. The identity of the gaps appears only at n > 0. Figure 6 gives the repeating units of the twin sub-clusters, in the so-called geodesic projection.

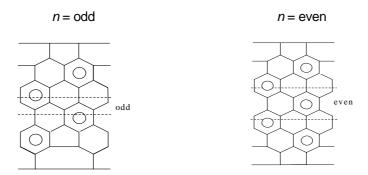


Figure 6. Geodesic projection of the repeating units of the twin sub-clusters with the general formula $C_{13k,k-H[3k,n]-[6]}$

The novel cluster $C_{13k,k+1[3k,n]-[6]}$, of properly closed shell fullerenes, having N=13k+3kn; n=1,2,... and equal number of positive and negative eigenvalues $n_+=n_-$, we call the zig-zag cylinder rule, to specify the type of the tube distancing the two caps. This cluster does nos superimposes over the

leapfrog^{15,18,19} (properly closed-shell) fullerenes with the exception of the cages having k = 6. The spectral data are supported by semiempirical calculations (see Table 1).

In going from one sub-cluster to the other, complementary (twisted) series of pseudo-closed shell tubulenes appear. Figure 7 shows the plots of PSC and PC series corresponding to k=6 (viewed as single odd&even series). Clearly, the gap is deeper for the PC series, suggesting a higher kinetic stability of the corresponding tubulenes. Note that the term n=0 in PSC is just the C_{78} C; C_1 (see above).

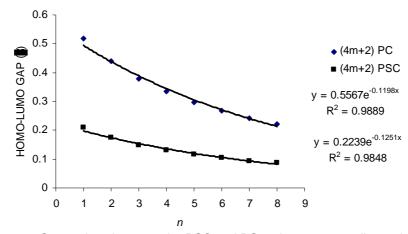


Figure 7. Comparison between the PSC and PC series corresponding to k = 6

In the case of objects with formula $C_{N,k+1[2k,n]-[7,6,7]}$ (see Figure 2) the open shell appears, starting with the first row of hexes (n=2) distancing the two caps. The two frontier orbitals degenerate within the positive domain of eigenvalue for k=4, while for higher k they are located either in the positive or negative domain (as in some tetrahedral fullerenes, with $N \geq 628$). The most important exception is $C_{72,6+1[12,2]-[7,6,7]}$ (N=156), with a meta-closed shell. The "accidental" gap is, however, very thin (-0.026439; -0.028345). This is the only case of MC shell reported in spherical fullerenes (more exactly, fullerenes of genus zero). Is

SEMIEMPIRICAL CALCULATIONS

The semiempirical calculations were calculated with the PM3 Hamiltonian (by HyperChem software package).²⁶ Data are given in Table 1.

Fowler²⁷ has found that geometric instability appears in fullerenes at a "small" gap of *ca.* 5 eV, in semiempirical calculation, or 0.4 $|\beta|$ in simple Hückel calculation. At least the first terms, and particularly in the series k = 4m+2

(Table 1, entries 4-6 and 10-12), show favorable bandgap and relatively low heat of formation (per atom). Compare these data with those for C_{60} : HF = 13.512; PM3 Gap = 6.594 and find that we are in the same domain. Besides the isolated C_{78} (entry 4), some other tubulenes can be candidates to the status of real molecules. A cage having a 10-fold face could appear strange but it just obeys the Hückel 4m+2 aromatic rule.

Table 1. Data for the tubulenes $C_{13k,k\cdot H[3k,n]+6]}$

				PM3	PM3		Spectral Data		
	Cage	Ν	Sym.	HF/at.	GAP	$\lambda_{N/2}$	$\lambda_{N/2+1}$	GAP	Shell
	k; n			(kcal/mol)	(eV)	IV / Z	14 / 2 1	(β units)	
1	4; 0	52	D_{2h}	21.585	5.533	0.2564	0	0.2564	PC
2	4; 1	64	S_4	19.271	5.783	0.3789	-0.0774	0.4563	PC
3	4; 2	76	D_{2h}	18.162	5.469	0.3260	-0.0470	0.3731	PC
4	6; 0	78	C _s	12.294	6.083	0.5157	-0.1176	0.6333	PC
5	6; 1	96	D_{3d}	11.015	5.564	0.4329	-0.0844	0.5173	PC
6	6;2	114	C s	10.381	5.195	0.3688	-0.0721	0.4409	PC
7	8; 0	104	C _{4h}	11.453	5.730	0.2564	0	0.2564	PC
8	8; 1	128	D_{4d}	10.158	5.497	0.3789	-0.0774	0.4563	PC
9	8; 2	152	C_{4h}	9.390	5.112	0.3260	-0.0470	0.3731	PC
10	10; 0	130	C _{5h}	12.518	5.998	0.4579	-0.0874	0.5453	PC
11	10; 1	160	D_{5d}	11.875	5.512	0.4329	-0.0844	0.5173	PC
12	10; 2	190	C_{5h}	10.715	5.115	0.3688	-0.0721	0.4409	PC

CONCLUSIONS

The zig-zag cylinder rule, first reported in this paper, presents a cluster with the general formula $C_{13k,k+I[3k,n]-[6]}$, of properly closed shell tubulenes, having N=13k+3kn; n=1,2,... The number n is just the number of atom rows in the tube distancing the two caps. It shows the same bandgap for either odd or even k value at each positive n. The semiempirical calculations support the idea of relatively stable molecules, possible appearing in the soot of the vaporized graphite.

Acknowledgement. This paper was supported by the Romanian CNCSIS GRANT 2003.

THE "ZIG-ZAG" CYLINDER RULE

REFERENCES

- 1. H. Kroto, Fuller. Sci. Technol., 1994, 2, 333-342.
- J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker, Nature, 1997, 385, 780-781.
- 3. R. Martel, H. R. Shea and Ph. Avouris, J. Phys. Chem., B, 1999, 103, 7551-7556.
- D. Babić, D. J. Klein and T. G. Schmalz, J. Mol. Graphics Modell., 2001, 19, 222-231.
- A. Ceulemans, L. F. Chibotaru and P. W. Fowler, *Phys. Rev. Lett.*, **1998**, *80*, 1861-1864.
- E. C. Kirby, R. B. Mallion and P. Pollak, J. Chem. Soc., Faraday Trans., 1993, 89, 1945-1953.
- 7. A. Ceulemans, L. F. Chibotaru, S. A. Bovin and P. W. Fowler, *J. Chem Phys.*, **2000**, *112*, 4271-4278.
- 8. E. C. Kirby and P. Pollak, *J. Chem. Inf. Comput. Sci.*, **1998**, *38*, 66-70.
- 9. M. V. Diudea, I. Silaghi-Dumitrescu and B. Parv, *Commun. Math. Comput. Chem.* (*MATCH*), **2001**, *44*, 117-133.
- 10. M. V. Diudea, Fullerenes, Nanotubes, Carbon Nanostruct., 2002, 10, 273, 292.
- 11. Y. D. Gao and W. C. Herndon, J. Amer. Chem. Soc., 1993, 115, 8459.
- 12. P. W. Fowler, T. Heine, D. E. Manolopoulos, D. Mitchell, G. Orlandini, R. Schmidt, G. Seiferth and F. Zerbetto, *J. Phys. Chem.*, **1996**, *100*, 6984.
- 13. Müller, P. Kögerler and Ch. Kuhlmann, *J. Chem. Soc.*, *Chem. Commun.*, **1999**, 1347-1358.
- 14. E. Hückel, Z. Phys., 1931, 70, 204.
- 15. P. W. Fowler and J. I. Steer, J. Chem. Soc., Chem. Commun., 1987, 1403.
- 16. M. V. Diudea, P. E. John, A. Graovac and T. Pisanski, *Croat. Chem. Acta*, (in press).
- 17. P. W. Fowler and T. Pisanski, J. Chem. Soc., Faraday Trans., 1994, 90, 2865
- 18. P. W. Fowler, J. Chem. Soc., Faraday Trans., 1997, 93, 1-3.
- 19. P. W. Fowler, J. Chem. Soc., Faraday Trans., 1990, 86, 2073-2077.
- 20. M. V. Diudea, Int. J. Nanostruct., 2003 (submitted)
- D. E. Manolopoulos, J. C. May and S. E. Down, Chem. Phys. Lett., 1991, 181, 105-111.
- 22. G. Brinkmann, P. W. Fowler and M. Yoshida, *MATCH Commun. Math. Comput. Chem.*, **1998**, 38, 7-17.
- 23. A. J. Stone and D. J. Wales, Chem. Phys. Lett., 1986, 128, 501-503.

- 24. M. V. Diudea, Cs. L. Nagy, O. Ursu and S. T. Balaban, *Fullerenes, Nanotubes Carbon Nanostruct.*, **2003**, (submitted).
- 25. Y. Zhao, R. E. Smalley, and B. I. Yakobson, *Phys. Rev. B*, 2002, 66, 195409.
- 26. HyperChem[™], Release 4.5 for SGI, © 1991-1995, HyperCube, Inc. Y.
- 27. P. W. Fowler and J. P. B. Sandall, *J. Chem. Soc.*, *Perkin Trans.*2, **1994**,1917-1921.