In memoriam prof. dr. loan A. Silberg

$\label{eq:spectrophotometric} \textbf{SPECTROPHOTOMETRIC STUDIES OF} \\ \textbf{DIAZEPAM - } \beta\text{-CYCLODEXTRIN COMPLEX FORMATION} \\$

IRINA KACSO^a, IOAN BRATU^{a*}, ANDREEA FARCAS^b, MARIUS BOJITA^b

ABSTRACT. Solid state interactions between a bioactive substance-Diazepam and β -cyclodextrin (β -CD) - the so called inclusion compounds (obtained by different preparation methods: kneading, co-precipitation and freeze-drying) were investigated. The obtained compounds were investigated by FTIR spectroscopy to evidence their formation. The results revealed that the solid state inclusion compound, such as Diazepam/ β -cyclodextrin has a good stability. The stoichiometry of the inclusion complexes of diazepam with β -CD is 1:1 was investigated in solution. The association constant of the complex was determined by UV spectrophotometry. The encapsulation might improve Diazepam stability and bioavailability of the drug.

Keywords: FTIR, UV-Vis, stoichiometry, association constant, inclusion compound, β -cyclodextrin

INTRODUCTION

An antidepressant bioactive substance, diazepam (DZP)(7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,) (Fig. 1), is used in the treatment of severe anxiety disorders, as a hypnotic in the short-term management of insomnia, as a sedative and premedicant, as an anticonvulsant, and in the management of alcohol withdrawal syndrome.

Fig. 1. Diazepam molecule

^a National Institute for R&D of Isotopic and Molecular Technology, P.O. Box 700, RO-400293 Cluj-Napoca, Romania

^{*} Corresponding author: email: ibratu@itim-cj.ro

^b University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania

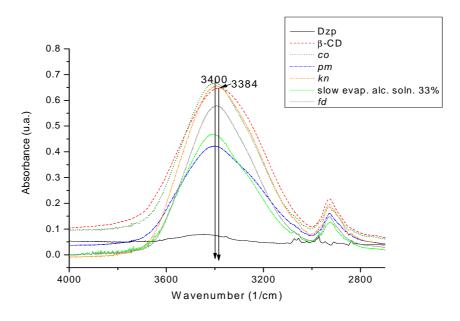
In order to improve the solubility in water and the bioavailability this compound is encapsulated in cyclodextrins. Cyclodextrins (CDs) - cyclic oligosaccharides, are natural products obtained by enzymatic reaction of starch. Upon the addition of the CGT-ase enzyme to an aqueous solution of starch, every sixth or seventh of the eight α -1, 4-glycosilic linkages is split, reacting with their own non-reducing end. It results a six-, seven- or eightmembered macro-ring. These cyclic maltodextrins are called α -, β -, and γ -cyclodextrins [1]. The aim of the paper was to prepare and to evidence by different spectrophotometric methods some inclusion compounds of diazepam with β -CD.

Two methods, FTIR and UV spectroscopy [2, 3] were employed to confirm inclusion compound formation.

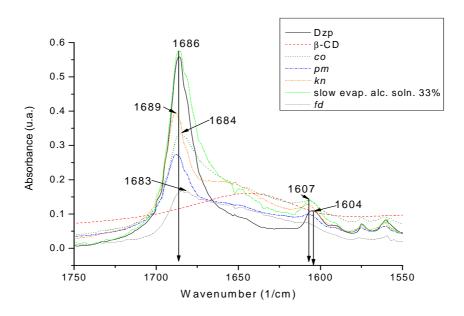
Materials and methods

The inclusion compound was obtained by different methods: physical mixture (pm), kneading (kn) - grounded the amounts of diazepam and β -cyclodextrin in an agate mortar for 60 min, using ethanol 33% as the wetting agent and the paste thus obtained was dried at 38°C; co precipitation (co) - mixing the amounts of diazepam and β -cyclodextrin (15mM alcoholic solution 3:1 v/v) in 1:1 molar ratio, stirring for 48 hours at 40°C succeeded by evaporation and drying at room temperature; freeze-drying (fd) - the amounts of diazepam solved in β -cyclodextrin saturated alcoholic solution in molar ratio 1:1, the product was frozen and dried by immersion in freezer-drier (Alpha 1-2 LD plus) for over 24 hrs.

FTIR spectra were obtained with a JASCO 6100 FTIR spectrometer in the 4000 to 400 cm⁻¹ with a resolution of 2 cm⁻¹, using the KBr pellet technique.


UV-Vis absorption spectra were recorded on a V-550 JASCO UV/Vis spectrometer equipped with quartz cells having 1.0 cm optical path length.

RESULTS AND DISCUSSION


Inclusion compound of DZP with β -CD FTIR spectroscopy

FTIR spectrum of the 1:1 physical mixture (*pm*), see Fig. 2, contains the absorption bands of each component so no inclusion compound was obtained in this case.

In the 4000 to 2000 cm⁻¹ spectral region the O-H stretching vibration are located at 3400 cm⁻¹ for pm and 3384 cm⁻¹ for β -CD whereas for kn this band is shifted to 3401 cm⁻¹ and to 3390 cm⁻¹ for fd products. One concludes that the hydrogen bonds are implied severely in the inclusion compound formation. In the 1800 to 1550 cm⁻¹ spectral region, see Fig. 3, one identify the carbonyl group vibration (located at 1686 cm⁻¹) for pure DZP and pm system.

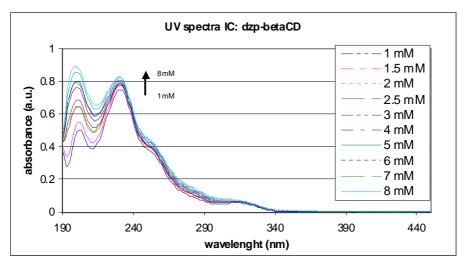
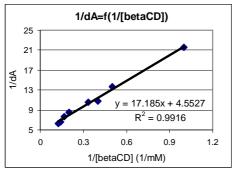

Fig. 2. FTIR spectra of Diazepam and its inclusion compounds obtained by different methods, 4000-2700 cm⁻¹ spectral region

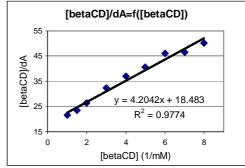
Fig. 3. FTIR spectra of Diazepam and its inclusion compounds obtained by different methods, 1750-1550 cm⁻¹ spectral region

UV-Vis spectroscopy

The investigated solutions of DZP at constant concentration 2.5×10^{-5} M and β -CD at increasing concentrations (1; 1.5; 2; 2.5; 3; 4; 5; 6; 7; 8)×10⁻³ M have been prepared. The obtained solutions were mixed for 6 hours at 30°C and then left for 24 hours for equilibration. This procedure was replicated in order to obtain two or more absorbance values for each of the β -CD concentration studied. The absorption spectra of the inclusion complex were showed in Fig.4.

Fig. 4. UV-Vis absorption spectra of 0.025 mM diazepam at different concentration of β-CD: 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8 mM in alcoholic solution (3:1 v/v)


The stoichiometric ratio of inclusion complex of host (β -CD) – guest (DZP) should theoretically be 1:1, according to their chemical reaction equation (1) [4]. A linear relationship should be obtained between 1/dA and 1/[β CD] based on the Benesi-Hildebrand equation [5] (2):


$$DZP + \beta CD \xrightarrow{K} DZP - \beta CD \tag{1}$$

$$\frac{1}{A} = \frac{1}{\varepsilon[G]_o K[CD]} + \frac{1}{\varepsilon[G]_o}$$
 (2)

where A is the absorbance of the DZP solution at each β -CD concentration; [G]₀ the initial concentration of DZP; K the apparent formation constant; [CD] the concentration of β -CD and ϵ is the molar absorptivity. From the changes in the absorbance, an apparent formation constant value for the

inclusion complex can be determined. The result is shown in Fig. 5, a good linear relationship obtained proved that stoichiometric ratio of inclusion complex of host (β -CD) – guest (DZP) was 1:1. Fig. 6 presents the Scott plot, used as well as the Benesi-Hildebrand plot for the stability (association) constant determination.

Fig. 5. Benesi-Hildebrand plots for the DZP-βCD systems

Fig.6. Scott plots for the DZP-βCD systems

The values of the association constants calculated by the two methods [5, 6] (Table 1) differ from each other no more than by their errors. This fact suggests a satisfactory level of correlation between the obtained results.

Association constants for complexation of DZP with β-CD

Method of binding constant calculation	K _a (DZP- βCD) M ⁻¹	Correlation coefficient, R ²
Benesi-Hildebrand	264	0.9916
Scott	227	0.9774

CONCLUSIONS

The inclusion compounds of DZP with β -CD were obtained and evidenced by FTIR spectroscopy. The 1:1 stoichiometry and the stability constants of approx. 264 M $^{-1}$ and 227 M $^{-1}$ were determined for aqueous solutions with UV-vis spectroscopy by using Benesi-Hildebrand and Scott methods, respectively. These association constant values show that the encapsulation might improve Diazepam stability and bioavailability of the drug.

Table 1.

ACKNOWLEDGMENTS

The FTIR and UV-Vis measurements were supported by the CEEX no7 / 2005 VIASAN project.

REFERENCES

- 1. J. Szeijtli, Chem. Rev. 1998, 98,1743.
- 2. M.A. Vandelli, G. Salvioli, A. Mucci, R. Panini, L. Malmusi, F. Forni, *J Pharm. Sci.* **2000**, *90*(*8*),1186.
- 3. H.J. Schneider, A. Yatsimirsky, Principles and Methods in Supramolecular Chemistry, John Wiley & Sons, New York, **1999**, 137.
- 4. H. Y. Wang, J. Han, X.G. Feng, Spectroscopic study orange G β-cyclodextrin complex and its analytical application, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **2007**, *66*, 578.
- 5. H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.
- 6. R.L. Scott, Rev. Trav. Chim., 1956, 75, 787.