COUNTING NUMBERS OF PERMUTATIONAL ISOMERS OF AN INFINITE FAMILY OF FULLERENES

MARYAM JALALI AND MODJTABA GHORBANI^a

ABSTRACT. Hetero-fullerenes are fullerene molecules in which one or more carbon atoms are replaced by hetero-atoms such as boron or nitrogen, whose formation is a kind of "on-ball" doping of the fullerene cage. In this paper, the numbers of all $C_{40n+k}X_k$ hetero-fullerenes are computed, where C_{40n} is an infinite family of fullerenes. We apply the computer algebra system GAP to compute the number of permutational isomers of hetero-fullerenes of the C_{80} fullerene with D_{20} point group symmetry.

Keywords: Fullerene, Hetero-fullerene, Cycle Index, Permutation Group.

INTRODUCTION

Carbon exists in several allotropic forms in nature. Fullerenes are zero-dimensional nanostructures, discovered experimentally in 1985 [1]. Fullerenes are carbon-cage molecules in which a number of carbon atoms are bonded in a nearly spherical configuration. Let p, h, n and m be the number of pentagons, hexagons, carbon atoms and bonds between them, in a given fullerene F. Since each atom lies in exactly 3 faces and each edge lies in 2 faces, the number of atoms is n = (5p+6h)/3, the number of edges is m = (5p+6h)/2 = 3/2n and the number of faces is f = p + h. By the Euler's formula n - m + f = 2, one can deduce that (5p+6h)/3 - (5p+6h)/2 + p + h = 2, and therefore p = 12, n = 2h + 20 and m = 3h + 30. This implies that such molecules, made entirely of n carbon atoms, have 12 pentagonal and (n/2 - 10) hexagonal faces, while $n \neq 22$ is a natural number equal or greater than 20 [2]. Hetero-fullerenes are fullerene molecules in which one or more carbon atoms are replaced by heteroatoms such as boron or nitrogen, whose formation is a kind of "on-ball" doping of the fullerene cage.

Enumerating molecules is a mind-boggling problem that has fascinated chemists and mathematicians alike for more than a century. Some of the solutions developed were not only valuable to chemists but to mathematicians as well. Indeed, while trying to solve the problem of counting the isomers of

^a Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I. R. Iran, Ghorbani@kashanu.ac.ir

substituted aromatic compounds, important concepts in graph theory and combinatorics were developed. The terms graph and tree were even coined in a chemistry context. Historically, molecular enumeration has brought a fertile ground of research between Chemistry, Mathematics, and Computer Science. Still today, new concepts and techniques are being developed at the interface of these fields [3].

Detecting symmetry of molecules is a well-studied problem with applications in a large number of areas. Randić [4] and then Balasubramanian [5-7] considered the Euclidean matrix of a chemical graph to find its symmetry. Here the Euclidean matrix of a molecular graph G is a matrix $D(G) = [d_{i,j}]$, where for $i \neq j$, d_{ij} is the Euclidean distance between the nuclei i and j; in this matrix d_{ii} are zero.

Suppose σ is a permutation on n atoms of the molecule under consideration. Then the permutation matrix P_{σ} is defines as $P_{\sigma}=[x_{ij}]$, where $x_{ij}=1$ if $i=\sigma(j)$ and 0 otherwise. It is easy to see that $P_{\sigma}P\tau=P_{\sigma\tau}$, for any two permutations σ and τ on n objects, and so the set of all n × n permutation matrices is a group isomorphic to the symmetric group S_n on n symbols. It is a well-known fact that a permutation σ of the vertices of a graph G belongs to its automorphism group if it satisfies $P_{\sigma}^tAP_{\sigma}=A$, where A is the adjacency matrix of G. On the other hand, it is a well-known fact that for computing the symmetry of a molecule, it is sufficient to solve the matrix equation $P^tEP=E$, where E is the Euclidean matrix of the molecule under consideration and P varies on the set of all permutation matrices with the same dimension as E.

Ashrafi et al. [8-12] introduced some algorithms for computing the symmetry of molecules and applied them to compute the symmetry of some big fullerenes. We note that, to compute the number of isomers of a given fullerene, we need an efficient method for computing symmetry of fullerenes. Fripertinger [13] computed the symmetry of some fullerenes and then applied SYMMETRICA [14] to calculate the number of $C_{60}H_kCl_{60-k}$ molecules.

In this paper we extend our investigation on isomerism of heterofullerenes to $C_{40n-k}X_k$ [15]. Throughout this paper, the notation is standard and taken mainly from the standard books of Graph Theory.

RESULTS AND DISCUSSION

Groups are often used to describe the symmetry of objects. This is formalized by the notion of a *group action*. Let G be a group and X a nonempty set. An *action* of G on X is denoted by G_X and X is called a G-set. It induces a group homomorphism ϕ from G into the symmetric group G_X on X, where $\phi(g)x = gx$ for all $x \in X$. The orbit of x will be indicated as x^G and

defined as the set of all ϕ (g)x, $g \in G$. The set of all G-orbits will be denoted by $G\setminus X:=\{x^G\mid x\in X\}$. Suppose g is a permutation of n symbols with exactly $\lambda 1$ orbits of size 1, $\lambda 2$ orbits of size 2, ..., and λn orbits of size n. Then the cyclic type of g is defined as $1^{\lambda 1}$ $2^{\lambda 2}$... $n^{\lambda n}$.

Enumeration of chemical isomers can be accomplished by various methods. The Polya-Redfield theorem¹⁶ is a standard method for combinatorial enumeration of graphs, polyhedra, chemical isomers, etc.

Denote by $C_{m,n}$ the set of all functions $f:\{1,2,...,m\} \to \{x_1,x_2,...,x_n\}$. The action of $p \in S_m$ induced on $C_{m,n}$ is defined by $\hat{p}(f) = fop^{-1}, f \in C_{m,n}$. Treating the colors $x_1,x_2,...,x_n$ that comprise the range of $f \in C_{m,n}$ as independent variables, the weight of f is $W(f) = \prod_i f(i)$. Evidently, W(f) is a monomial of (total) degree m. Suppose G is a permutation group of degree m, $\hat{G} = \{\hat{p}: p \in G\}$, \hat{p} being as above. Let $p_1,p_2,...,p_t$ be the distinct orbits of \hat{G} . The weight of p_i is the common value of W(f), $f \in p_i$. The sum of the weights of the orbits is the pattern inventory

$$W_G(x_1,x_2,...,x_n) = \sum_{i=1}^{t} w(p_i).$$

Theorem.1 (Pólya's Theorem¹⁶) If G is a subgroup of S_m then the pattern inventory for the orbits of $C_{m,n}$ modulo \hat{G} is

$$W_{G}(x_{1},x_{2},...,x_{n}) = \frac{1}{|G|} \sum_{p \in G} M_{1}^{C_{1}(p)} M_{2}^{C_{2}(p)} ... M_{m}^{C_{m}(p)},$$

where $M_k=x_1^k+x_2^k+...+x_n^k$, the k^{th} power is the sum of x's, and $(C_1(p),...,C_m(p))$ is the cycle type of the permutation p.

We now introduce the notion of cycle index. Let G be a permutation group. The cycle index of G acting on X is the polynomial Z(G, X) over Q in terms of indeterminates $x_1, x_2, \ldots, x_t, t = |X|$, defined by

$$Z(G, X) = \frac{1}{|G|} \sum_{C \in Conj(G)} |C| \prod_{i=1}^{t} x_i^{C_i(g_e)}, \text{ where Conj(G) is the set of all }$$

conjugacy classes C of G with representatives $g_C \in C$.

The dihedral group D_n is the symmetry group of an n-sided regular polygon, of n > 1. These groups are one of the most important classes of finite groups currently applicable in chemistry. One group presentation for D_n is: $\langle x,y \mid x^n = y^2 = e$, $yxy = x^{-1} \rangle$. This means that D_n is generated by a two elements set $\{x,y\}$ with the condition $x^n = y^2 = e$ and $yxy = x^{-1}$.

MARYAM JALALI, MODJTABA GHORBANI

In this section, an infinite class $C_{40n}(n \ge 2)$ of fullerene molecules with exactly 40n carbon atoms and symmetry group D_{20} is constructed, as shown in Figure 1. To compute the number of isomers of these fullerenes, we first compute a permutation representation for their symmetry group.

Consider the graph of fullerene C_{40n} (Figure 1). One can see that the generators of this group are as follows:

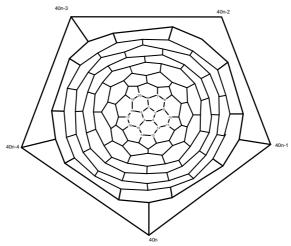


Figure 1. The Schlegel diagram of C_{40n}.

$$\begin{split} \sigma = &(2,5)(3,4)(7,10)...(10n-10,10n-7)(10n-4,10n-2)(10n-1,10n), \\ \tau = &(1,10n-4,3,10n-1,5,10n-3,2,10n,4,10n-2)...(10n-44,10n-36,10n-41,10n-38,10n-43,10n-39,10n-40,10n-37,10n-42,10n-32). \end{split}$$

Since $\sigma^2 = \tau^{10} =$ identity and $\sigma^{-1}\tau\sigma = \tau^{-1}$, the symmetry group G of these fullerenes is isomorphic to the dihedral group of order 20. In Table 1, the cycle types of elements of G are computed.

Table 1. Cycle Types of Elements of C_{40n}.

Fullerene	Cycle type	#Permutations
C _{40n}	1 ⁴⁰ⁿ	1
	1 ⁴ⁿ 2 ¹⁸ⁿ	5
	2 ²⁰ⁿ	6
	10 ⁴ⁿ	4
	5 ⁸ⁿ	4

Thus the cycle index of G is computed as $Z(G,X) = ({x_1}^{40n} + 5{x_1}^{4n}{x_2}^{18n} + 6{x_2}^{20n} + 4{x_1}^{4n} + 4{x_5}^{8n})/20$. From the cycle index one can compute the number of different colourings using k colours via Pólya's theorem by replacing each variable x_i in the cycle index by $1 + x^i$.

In what follows we present a GAP program [17] to compute the number of hetero-fullerenes for $C_{40n-k}X_k,\ n\geq .$

A Gap Program for Counting the Number of Hetero fullerenes for C_{40n} (n≥2)

```
f:=function(n)
          local s,i,f,x,t,tt,g;
           Print("Number of vertices is: ",40*n,"\n");
            x:=Indeterminate(Rationals, "x");
f:=((1+x)^{40*n}+5*((1+x)^{4*n})*((1+x^2)^{18*n})+6*((1+x^2)^{20*n})
                        n))+4*((1+x^{(10)})^{(4*n)})+4*((1+x^5)^{(8*n)}))/20;
g:=((1+x)^{(40*n)}+4*((1+x^5)^{(8*n)})+5*((1+x^2)^{(20*n)}))/10;
t:=CoefficientsOfLaurentPolynomial(f);
            tt:=CoefficientsOfLaurentPolynomial(g);
                 Print("\n");
                   Print("\n");
                    Print("Number of Molecules for Symmetry Group =","\n");
                       for i in t[1] do
                         Print(i,"\n");
                 Print("Number of Molecules for Rotation Group=","\n");
                   for i in tt[1] do
                     Print(i, "\n");
                   od;
            return;
        end:
```

For first, we apply this program to compute the number of heterofullerenes for the case n=2 (Table 2).

To investigate the efficiency of this program, we consider the fullerene C_{80} , Figure 2.

MARYAM JALALI, MODJTABA GHORBANI

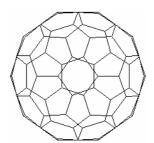


Figure 2. The Fullerene C₈₀

Table 2. Number of $C_{80-k}X_k$ molecules.

	Table 2. Namber of O _{80-R} X _R molecules.				
k,80-k	Number of $C_{80-k}X_k$ molecules For	Number of C _{80-k} X _k molecules For			
,	Symmetry Group	Rotational Group			
0,80	1	1			
1,79	6	8			
2,78	186	336			
3,77	4194	8216			
4,76	79740	158548			
5,75	1203782	2404008			
6,74	15034806	30054960			
7,73	158859426	317671640			
8,72	1449480258	2898799410			
9,71	11595241522	23190029720			
10,70	82325438886	164649540064			
11,69	523885533094	1047767706440			
12,68	3012337514396	6024666231220			
13,67	15756824366962	31513628709080			
14,66	75407639879882	150815232429520			
15,65	331793540197286	663586981674280			
16,64	1347911182335707	2695822151503195			
17,63	5074488888801112	10148977366779680			
18,62	17760710869067496	35521420920448320			
19,61	57956003064041544	115912004662694240			
20,60	176765808675933576	353531614645048424			
21,59	505045165439887512	1010090326346335520			
22,58	1354439305721598168	2708878603630164160			
23,57	3415542591867172296	6831085171456838240			
24,56	8111913652414445976	16223827285003417560			
25,55	18170686570736722680	36341373112150381184			
26,54	38437990816963861368	76875981589411644864			
27,53	76875981614459748280	153751963166790066848			
28,52	145515250904543680112	291030501720170377168			
29,51	260923898142211496104	521847796167085497824			
30,50	443570626831407097544	887141253504158022032			
31,49	715436494844336235640	1430872989490395719840			
32,48	1095512132721165787070	2191024265188594496830			
33,47	1593472192991913171700	3186944385683154103280			
34,46	2202740972661988424780	4405481944959314508640			
35,45	2895030992577728759340	5790061984745360652720			
36,44	3618788740730127897800	7237577480988390941080			
37,43	4303424448373513070740	8606848896243103666160			
38,42	4869664507392977231060	9739329014235469036960			
39,41	5244254084832211801660	10488508169105968435280			
40,40	5375360436990996540520	10750720873402540915720			

We now apply the above presented cycle index to compute the number of permutational isomers of fullerenes under consideration (Table 3).

Table 3: Number of $C_{120-k}X_k$ molecules.

		Number of Co. Y. molecules
k,120-k	Number of C _{120-k} X _k molecules For Symmetry Group	Number of $C_{120-k}X_k$ molecules For Rotational Group
0,120	1	1
1,119	9	12
2,118	405	744
3,117	14259	28084
4,116	412632	822342
5,115	9536367	19057812
6,114	182684265	365291656
7,113	2974542453	5948756892
8,112 9.111	42013919853 522832240566	84026434917 1045659267016
10,110	5803419985974	11606820594744
11,109	58034121398226	116068178638776
12,108	527143096685568	1054285981000812
13,107	4379341982282658	8758683326510712
14,106	33470683765816230	66941365617149616
15,105	236526160473589102	473052315663260312
16,104	1552202918686129347	3104405822819450907
17,103	9495829590389193519	18991659143539682964
18,102	54337247045227281915	108674493995424201624
19, 101	291705220818253169109	583410441409438331052
20,100	1473111364848094865916	2946222729155360589846
21,99 22,98	7014816022315509542745 31566672099131635416015	14029632043417445580060 63133344195549855172920
23,97	134501472419113302461595	269002944832482326122020
24,96	543610117688714575771545	1087220235365315747498985
25,95	2087462851912205617786356	4174925703800125701430752
26,94	7627268112737303829404844	15254536225426119648417888
27,93	26554192688746406631677828	53108385377400459421117936
28,92	88197854287560528641843328	176395708574945913169466616
29,91	279800089463852439888710724	559600178927387106905277168
30,90	848726938040170729207289484	1697453876079767487990657608
31,89	2464045949148508100000172492	4928091898296021941456150544
32,88	6853127796068800101072021819	13706255592135885828862845963
33,87 34,86	18275007456182501794269299289 46762519079054030050374396597	36550014912362162732466449868 93525038158103374720385845224
35,85	114902189737101913734873735291	229804379474196387869171548452
36,84	271296836879265733970689673432	542593673758519711650326477494
37,83	615917143185355131079975284759	1231834286370692349388801702308
38,82	1345292707483796525793076573689	2690585414967565890802955326728
39,81	2828564154196690639872133979477	5657128308393341518178262068764
40,80	5727842412248288296445487967359	11455684824496518670233233886183
41,79	11176277877557617924542986567514	22352555755115154291338498905848
42,78	21022046483977406618721800434458	42044092967954698968798134423376
43,77	38133014552331079868756610116958	76266029104662004841211423177096
44,76 45,75	66732775466579362235864741865984 112704243010222876917676943647006	133465550933158515549260065296468 225408486020445480975135984579752
45,75 46,74	183756917951450303496185554644330	367513835902900252412996619222480
47,73	289319402732070625508986408033290	578638805464140804538392558517560
48,72	440006591655024025482027159608535	880013183310047491594999090498335
49,71	646540297942076034597277958373255	1293080595884151389733754799136180
50,70	918087223077747910273484362873443	1836174446155494999379650802722024
51,69	1260119717949849972898410419576157	2520239435899698983128141706551692
52,68	1672081933433454711928110241702728	3344163866866908301016963593337634
53,67	2145312669310847447636010877139601	4290625338621693624396676664419644
54,66	2661776830441236597146467544097383	5323553660882471763161240697200632
55,65 56.64	3194132196529483813659635751641043	6388264393058966062990607479134372
56,64 57,63	3707474870971722252390899898299397 4162778802494565249939680394539240	7414949741943442803545499299939301 8325557604989128703646906989049312
58,62	4521639044088924319727997397894440	9043278088177846752565403398800192
59,61	4751552893788361090371095093480184	9503105787576720256120636674233376
60,60	4830745442018167136321641186395224	9661490884036332319521604735649640

CONCLUSIONS

Hetero-fullerenes or fullerene molecules in which one or more carbon atoms are replaced by hetero-atoms such as boron or nitrogen, can be enumerated by applying the Polya's theorem. In this paper, the numbers of all $C_{40n-k}X_k$ hetero-fullerenes were computed, C_{40n} being an infinite family of fullerenes. In this respect, we applied the computer algebra system GAP to compute the number of permutational isomers of hetero-fullerenes of the C_{80} fullerene with D_{20} point group symmetry.

REFERENCES

- 1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, *Nature*, **1985**, *318*, *162*.
- P.W. Fowler and D.E. Manolopoulos, "An Atlas of Fullerenes", Oxford Univ. Press, Oxford, 1995.
- 3. S. Fujita, "Symmetry and Combinatorial Enumeration in Chemistry", Springer Verlag, Berlin, **1991**.
- 4. M. Randić, J. Chem. Phys, 1974, 60, 3920.
- 5. K. Balasubramanian, J. Chem. Phys, 1980, 72, 665.
- 6. K. Balasubramanian, Int. J. Quantum Chem, 1982, 21, 411.
- 7. K. Balasubramanian, Chem. Rev, 1985, 85, 599.
- 8. A. R. Ashrafi, M. Ghorbani, MATCH Commun. Math. Comput. Chem., 2008, 60, 359.
- 9. M. Ghorbani and A. R. Ashrafi, J. Comput. Theor. Nanosci., 2006, 3, 803.
- 10. A.R. Ashrafi, M. Ghorbani and M. Jalali, *Digest Journal of Nanomaterials and Biostructures*, **2008**, *3*(4), 245.
- 11. M. Ghorbani, and M. Jalali, *Digest Journal of Nanomaterials and Biostructures*, **2008**, *3*(*4*), *269*.
- 12. A. R. Ashrafi, M. Jalali, M. Ghorbani and M. V. Diudea, *MATCH Commun. Math. Comput. Chem*, **2008**, *60*(3), *905*.
- 13. H. Fripertinger, MATCH Commun. Math. Comput. Chem, 1996, 33, 121.
- 14. SYMMETRICA, A program system devoted to representation theory, invariant theory and combinatorics of finite symmetric groups and related classes of groups, Copyright by "Lehrstuhl II für Mathematik, Universität Bayreuth, 95440 Bayreuth". Distributed via anonymous ftp 132.180.16.20 in dist/SYM.tar.Z.
- 15. M. Ghorbani and M. Jalali, *Digest Journal of Nanomaterials and Biostructures*, **2008**, *3*(*4*), *269*.
- 16. G. Pólya, R. C. Read, "Combinatorial Enumeration of Groups and Chemical compounds, Springer, New York", **1987**.
- 17. The GAP Team, GAP, Groups, Algorithms and Programming, Department of Mathematics, RWTH Aachen, 1995.