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ABSTRACT. Relative centricity RC values of vertices/atoms are calculated 
within the Distance and Cluj-Distance criteria. The vertex RC distribution in 
a molecular graph provides atom equivalence classes, useful in interpretation 
of NMR spectra. Timed by vertex valences, RC provides a new index, called 
Centric Connectivity CC, which can be useful in topological characterization of 
graphs and in QSAR/QSPR studies. 
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INTRODUCTION 
 

 Let G = (V, E) be a connected graph, with no multiple bonds and loops. V 
is the set of vertices and E is the set of edges in G; | ( ) |v V G=  and | ( ) |e E G=  
are their cardinalities. 

A walk w is an alternating string of vertices and edges: w1,n = (v1, e1, v2, e2, 
..., vn-1, em, vn), with the property that any subsequent pair of vertices represent an 
edge: (vi-1, vi) ∈ E(G). Revisiting of vertices and edges is allowed [1-6]. 

The length of a walk, l(w1,n) =⏐E(w1,n)⏐equals the number of its traversed 
edges. In the above relation E(w1,n) is the edge set of the walk w1,n . The walk 
is closed if v1 = vn and is open otherwise [3,5].  

A path p is a walk having all its vertices and edges distinct: vi ≠ vj, 
(vi-1, vi) ≠ (vj-1, vj) for any 1 ≤ i < j ≤ n. As a consequence, revisiting of 
vertices and edges, as well as branching, is prohibited. The length of a path 
is l(p1,n ) = ⏐E(p1,n)⏐ = ⏐V(p1,n )⏐- 1, with V(p1,n ) being the vertex set of the 
path p1,n . A closed path is a cycle ( i.e., circuit).  

A path is Hamiltonian if all the vertices in G are visited at most once:  
n = |V(G)|. If such a path is closed, then it is a Hamiltonian circuit.  

The distance dij is the length of a shortest path joining vertices vi and vj: 
dij = min l(pij);  otherwise dij = ∞. The set of all distances (i.e., geodesics) in 
G is denoted by DI(G).  

The detour δij is the length of a longest path between vertices vi and vj:  
δij = max l( pij); otherwise δij = ∞. The set of all detours in G is denoted by DE(G). 

The square arrays that collect the distances and detours, in G are 
called  the Distance DI and Detour DE matrix, respectively [3,5]:   
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 In words, these matrices collect the number of edges separating the 
vertices i and j on the shortest and longest path pi,,j, respectively. The half 
sum of entries in the Distance and Detour matrices provide the well-known 
Wiener index W [7] and its analogue, the detour number w [8,9]. 

The Cluj fragments are sets of vertices obeying the relation [3,5,10-13]: 

{ }),(),();( )()(,, vjDviDGVvvCJ pGpGpji −− <∈=      (3) 
The entries in the Cluj matrix UCJ are taken, by definition, as the 

maximum cardinality among all such fragments: 
pj,i,

p
CJmax=

ji,
[UCJ]         (4) 

It is because, in graphs containing rings, more than one path can join 
the pair (i, j), thus resulting more than one fragment related to i (with respect to 
j and path p).  

The Cluj matrix is defined by using either distances or detours [14]: 
when path p belongs to the set of distances DI(G), the suffix DI is added to 
the name of matrix, as in UCJDI. When path p belongs to the set of detours 
DE(G), the suffix is DE.  
 Two graphs are called isomorphic, G ≈ G', if there exists a mapping  
f : V → V' that preserves adjacency (i.e., if (i,j)∈ E(G), then (f (i), f (j))∈ E'(G’)). 
The function f provides a one-to-one correspondence between the vertices 
of the two sets. The isomorphism of G with itself is called an automorphism. It 
is demonstrated that all the automorphisms of G form a group, Aut(G) [3,5]. 

The symmetry of a graph is often called a topological symmetry; it is 
defined in terms of connectivity, as a constitutive principle of molecules and 
expresses equivalence relationships among elements of the graph: vertices, 
bonds, faces or larger subgraphs. The topological symmetry does not fully 
determine molecular geometry and it does not need to be the same as (i.e., 
isomorphic to) the molecular point group symmetry. However, it represents the 
maximal symmetry which the geometrical realization of a given topological 
structure may posses [15-17].  

Given a graph G=(V,E) and a group Aut(G), two vertices, i, j∈V are called 
equivalent if there is a group element, aut(vi)∈Aut(G), such that j aut(vi) i. The 
set of all vertices j (obeying the equivalence relation) is called the i’s class of 
equivalence. Two vertices i and j, showing the same vertex invariant Ini=Inj  belong 
to the same invariant class IC. The process of vertex partitioning in IC-s leads to m 
classes, with v1, v2,...vm vertices in each class. Note that invariant-based partitioning 
may differ from the orbits of automorphism since no vertex invariant is known 
so far to discriminate two non-equivalent vertices in any graph [3,5].  

In the chemical field, the isomorphism search could answer to the 
question if two molecular graphs represent or not one and the same chemical 
compound. Two isomorphic graphs will show the same topological indices, so 
that they cannot be distinguished by topological descriptors. 
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CENTRIC CONNECTIVITY CC INDEX 
 

In studies on the centrality/centricity of graphs, Bonchev et al. [18,19] 
have proposed the distance-based criteria 1D-3D as follows: 
 1D: minimum vertex eccentricity:   min ecci  
 2D: minimum vertex distance sum:  min DISi 

3D: minimum number of occurrence of the largest distance:  
min [LM, ShM]i,j max 

 When applied hierarchically, the above criteria lead to the center(s) 
of a graph.  

Our older centrality index C(LM, ShM) is a function also giving the graph 
center(s), used alone or within the MOLORD algorithm [20]. In the above, LM, 
ShM denote the layer matrix and the shell matrix (of a given square info-
matrix M), defined as follows [21-23]. 

The entries in the layer matrix (of vertex property) LM, are 

[ ]
,

,
i v

i k v
v d k

p
=

= ΣLM       (5) 

 Layer matrix is a collection of the above defined entries: 
{ },( ) [ ] ; ( ); [0,1,.., ( )]i kG i V G k d G= ∈ ∈LM LM   (6) 

with d(G) being the diameter of the graph (i.e., the largest distance in G). 
Any atomic/vertex property can be considered as pi. More over, any square 
matrix M can be taken as info matrix, i.e., the matrix supplying local/vertex 
properties as row sum RS, column sum CS. The zero column is just the 
column of vertex properties [ ] ii p=0,LM . When the vertex property is 1 (i.e., 
the counting property), the LM matrix will be LC (the Layer matrix of Counting). 

Define the entries in the shell matrix ShM (of pair vertex property) as [23] 

[ ]
,

, ,[ ]
i v

i k i v
v d k=

= ΣShM M     (7) 

The shell matrix is a collection of the above defined entries: 

{ },( ) [ ] ; V( ); [0,1,.., ( )]i kG i G k d G= ∈ ∈ShM ShM   (8) 
A shell matrix ShM(G), will partition the entries of the square matrix 

according to the vertex (distance) partitions in the graph. It represents a true 
decomposition of the property collected by the info square matrix according 
to the contributions brought by pair vertices pertaining to shells located at 
distance k around each vertex. The zero column entries [ ] ,0iShM are just 
the diagonal entries in the info matrix.  

In this paper, the distance-based functions, expressing the topology 
related to the center of the graph, are as follows: 

( ) ( ) ; 1, 2,... ( ); 1, 2,..n
kk

EP i P i k k d G n= ⋅ = =∑   (9) 
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,( ) [ , ]k i kP i = LM ShM       (10) 
1( ) ( ( ))C i EP i −=       (11) 

max min/( ) ( ) ( ) = ( ) / ( )RC i C i C i EP i EP i=    (12) 

( ) ( )
i

RC G RC i=∑       (13) 
( ) ( ) ( )CC i RC i d i= ⋅       (14) 
( ) ( )

i
CC G CC i=∑       (15) 
The distance-extension of the property P(i) (collected in LM or ShM, (10)) 

is made by a variable power function, depending of the info matrix M, to 
ensure the separation of the resulting values, of which meaning is that of an 
eccentric property EP(i) (9). There is a clear difference between EP(i) and 
the eccentricity ( )iε  (counting the largest topological distance from i to any other 
vertex in G), used in the construction of “Eccentric Connectivity index” [24]. 
The vertex centricity C(i) (11) is then calculated in the sense of the Bonchev’s 
1D-3D criteria, by virtue of the involved LM, ShM matrices.  

The relative centricity (or centrality) RC(i) (12) accounts for the deviation 
to the maximum centrality, equaling 1 in case of vertices being centers of 
the graph. The global value RC(G) (13) is useful in characterizing the distribution 
of the centricity function (11), particularly when normalized by the number 
of vertices of G.  

Finally, the centric connectivity CC index (14,15) is hoped to be useful 
in QSAR/QSPR studies, their values being of the same order of magnitude 
as the number of vertices/atoms in the molecular graph. Relation (14) can be 
generalized by changing d(i) by the “remote” degree [5,25] or by degrees of 
“extended connectivity” [26-30].  

Tables 1 and 2 exemplify the above formulas for the molecular graphs 
illustrated in Figure 1. The sum in the EP(i) column gives twice the Wiener index 
[7]. Note that G2 (Table 1) is a self-centered graph [31], of which all vertices 
are centers of the graph, as ranked by the RC(i) column. Also note that  G2 is a 
full Hamiltonian detour graph [14]; this means that all its detours are 
Hamiltonian path, visiting once all the vertices of the graph. 

The invariant classes of equivalence IC-s are given at the bottom of 
tables, by their population Pop (no. of vertices in each class). IC-s are important 
in NMR spectra interpretation. 

  
G1 G2 G3 G4 

Figure 1. G1 (v=21); G2 (v=16); G3 (v=17); G4 (v=17) 
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Table 1. Vertex eccentric property EP(i), relative centricity RC(i) and centric connectivity 
CC(i) values, calculated on LM=LC matrix (k^1), unless otherwise specified; no. of 

“invariant classes” IC-s, by their population Pop (no. of vertices) for G1 and G2. 
 

 G1  G2 (self-centered graph) 
# EP(i) RC(i) CC(i) d(i) EP(i) RC(i) CC(i) CC(i); (ShCJDI; k^2) 
1 70 0.7714 1.5429 2 33 1 3 2.8385 
2 70 0.7714 1.5429 2 33 1 3 2.9611 
3 70 0.7714 1.5429 2 33 1 3 2.9358 
4 54 1 3 3 33 1 3 2.9358 
5 64 0.8438 2.5313 3 33 1 3 3 
6 74 0.7297 1.4595 2 33 1 3 2.9611 
7 64 0.8438 2.5313 3 33 1 3 2.9358 
8 74 0.7297 1.4595 2 33 1 3 3 
9 64 0.8438 2.5313 3 33 1 3 2.9611 

10 54 1 3 3 33 1 3 2.9358 
11 64 0.8438 2.5313 3 33 1 3 3 
12 54 1 3 3 33 1 3 3 
13 64 0.8438 2.5313 3 33 1 3 2.9358 
14 74 0.7297 1.4595 2 33 1 3 2.9358 
15 64 0.8438 2.5313 3 33 1 3 3 
16 74 0.7297 1.4595 2 33 1 3 3 
17 54 1 3 3 528=2W 16 48=CC 47.3364=CC 
18 54 1 3 3     
19 74 0.7297 1.4595 2     
20 54 1 3 3     
21 74 0.7297 1.4595 2     

Sum 1362=2W 17.7552 46.5728=CC      
Pop   3,(6)3     1,3,(6)2 

 
Table 2. Vertex eccentric property EP(i), relative centricity RC(i) and centric connectivity 
CC(i) values, calculated on ShM=ShUCJDI matrix (k^3); no. of “invariant classes” 

IC-s, by their population Pop (no. of vertices) for G3 and G4; 
 

# G3  G4 
 EP(i) RC(i) CC(i) d(i) EP(i) RC(i) CC(i) d(i) 

1 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 
2 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 
3 2044 0.6771 2.7084 4 2483 0.7962 2.3886 3 
4 1384 1 4 4 1977 1 3 3 
5 2044 0.6771 2.7084 4 3322 0.5951 1.1902 2 
6 2478 0.5585 1.1170 2 2982 0.6630 1.3260 2 
7 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 
8 2044 0.6771 2.7084 4 2982 0.6630 1.3260 2 
9 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 

10 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
11 2044 0.6771 2.7084 4 2483 0.7962 2.3886 3 
12 2478 0.5585 1.1170 2 1977 1 3 3 
13 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
14 2478 0.5585 1.1170 2 2982 0.6630 1.3260 2 
15 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
16 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
17 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 

Sum 39296 10.4106 28.2380  47730 12.3370 31.4512  
Pop   1,4,12    2,3,(6)2  
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CONCLUSIONS 
 

The relative centricity RC of vertices in a molecular graph were calculated 
within the Distance and Cluj-Distance criteria. The vertex RC distribution in a molecular 
graph gives information on the equivalence classes (as vertex invariant classes) of 
atoms, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides 
an index, called Centric Connectivity CC. This index represents a new descriptor, 
which can be useful in topological characterization of graphs and in QSAR/QSPR 
studies. By definition, there is a clear difference between the Centric Connectivity index 
and the older Eccentric Connectivity index or its newer versions [32-34]. 
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