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ABSTRACT. Let G be a molecular graph. The Wiener index of G is defined 
as the sum of all distances between vertices of G. In this paper a method, 
which is useful to calculate the Wiener index of nanojunctions, is presented. 
We apply our method on the molecular graph of a carbon nanojunction 
Le1,1(Op(Q20(T)))_TU(3,3) and its Wiener index is given. 
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INTRODUCTION 
 

 A molecular graph is a simple graph such that its vertices correspond 
to the atoms and the edges to the bonds. Note that hydrogen atoms are often 
omitted. By IUPAC terminology, a topological index is a numerical value 
associated with a chemical constitution purporting for correlation of chemical 
structure with various physical properties, chemical reactivity or biological 
activity [1−3]. This concept was first proposed by Hosoya [4] for 
characterizing the topological nature of a graph. Such graph invariants are 
usually related to the distance function d(-,-). To explain, we assume that G 
is a molecular graph with vertex set V(G) and edge set E(G). The mapping 
d(-,-): V(G) × V(G) ⎯→ V(G) in which d(x,y) is the length of a minimum path 
connecting x and y, will be called “distance function” on G.   

Recently, this part of Mathematical Chemistry was named "Metric 
Graph Theory". The first topological index of this type was proposed in 1947 
by the chemist Harold Wiener [5]. It is defined as the sum of all distances 
between vertices of the graph under consideration. Suppose G is a graph 
with the vertex set V(G) = {v1,v2, …, vn}. The distance matrix of G is defined 
as D(G) = [dij], where dij = d(vi,vj). It is easy to see that the Wiener index of 
G is the half sum of entries of this matrix.  

Recently many researchers were interested in the problem of 
computing topological indices of nanostructures. There are more than 200 
published papers after 2000, but a few of them devoted to the Wiener index. 
On the other hand, there are not many methods to compute the Wiener index 
of molecular graphs and most of them are related to bipartite or planar graphs. 
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Since the molecular graphs of nanostructures are usually non-planar and 
most of them are not bipartite, every author applied a method designed for 
his/her problem.  

In some research papers [7−11] one of present authors (MVD) applied 
some computer programs to compute the Wiener index of nanotubes and 
nanotori. In this method, we must decompose the problem in some cases and 
then prove that the Wiener index in each case is a polynomial of a given order. 
Finally, we compute the Wiener index in some case and find the coefficients 
of our polynomials. There is also a numerical method given in [12] for estimating 
the Wiener index. 

In some papers [13−19], the authors presented a matrix method for 
computing Wiener index of nanotubes and nanotori. This method is appropriate 
for high symmetry objects and it is not general. The most general methods for 
computing Wiener index of nanostructures are those given in [20−22]. These 
methods are useful for graphs constructible by a few numbers of subgraphs. 
The aim of this paper is to apply the new method on the carbon nanojunction 
Le1.1(Op(Q2.0(T)))_ TU(3,3) and to compute its Wiener index. 

 
RESULT AND DISCUSSION 
 

Throughout this paper G[n] denotes the molecular graph of carbon 
nano- junction that show by Le1.1(Op(Q2.0(T)))_TU(3,3), Figure 1. At first, we 
introduce two notions. Suppose G and H are graphs such that V(H) ⊆  V(G) 
and E(H)⊆E(G). Then we call H to be a subgraph of G. H is called isometric if 
for each vertex x, y∈V(H), dH(x,y) = dG(x,y). In Figures 2−5, four isometric 
subgraphs of G[n] are depicted. Define n to be the number of rows in each 
arm tube (Figure 1, n=3). Then by a simple calculation, one can show that 
|V(G)| = 48(n + 1). 

To compute the Wiener index of Le1.1(Op(Q2.0(T)))−TU(3,3), we first 
calculate the Wiener matrices of these subgraphs. Suppose S1, .., S4 are 
defined as follows: 
 

• S1 is the summation of distances between the vertices of core, Figure 2. 
• S2 is the summation of distances between vertices of a tube and the 

vertices of the core, Figure 3. 
• S3 is the summation of distances between two vertices of a tube, 

Figure 4. 
• S4 is the summation of distances between vertices of two different 

arm tubes, Figure 5. 
 

We notice that the core has exactly 48 vertices and so its distance 
matrix is 4848× . By using HyperChem [23] and TopoCluj [24], one can see 
that S1 = 5664. We consider the isometric subgraphs K, L and M depicted 
in Figures 3 to 5. To compute S2, we consider the Figure 3. Suppose C 
denotes the subgraph core and Di, 1 ≤ i ≤ n, are the set of vertices in the ith 
row of a tube in G[n]. By TopoCluj, we calculate that the summation of 
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distances between vertices of the core and the set D1 is 3480. In what 
follows, we obtain a recursive formula for computing S2. 

 

• The summation of distances between vertices of the core and the 
set D1 is 3480, 

• The summation of distances between vertices of the core and the 
set D1 ∪ D2 is 3480 + 12 × 384, 

• The summation of distances between vertices of the core and the 
set D1 ∪ D2 ∪ D3 is 3480 + 12 × 384 + 12 × (384 + 96), 

• The summation of distances between vertices of the core and the 
set D1 ∪ D2 ∪ D3 ∪ D4 is 3480 + 12 × 384 + 12 × (384 + 96) + 12 × 
(384 + 2 × 96), 

• The summation of distances between vertices of the core and the 
set D1 ∪ ... ∪ Dn is 3480  + 12 × 384 (n – 1) + 12 × 96 × 

.
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Therefore, S2 = −1128 + 4608n + 576(n−1)2 – 576n + 576. Notice 
that for computing the Wiener index, we should compute 4S2. 
 We now calculate the quantity S3. To do this, we assume that RiRj 
denote the summation of distances between vertices of Di and Dj in 
subgraph L, Figure 4. For computing S3 it is enough to compute RiRj, for 1 ≤ 
i, j ≤ n. In Table 1, the occurrence of RiRj in S3 is computed. 
 

Table 1. The Number of RiRj in Computing S3. 
 

# Rows The Number of RiRj 
1 R1R1 
2 2R1R1 + R1R2 
3 3R1R1 + 2R1R2 + R1R3 
 

N 216n +528(n − 1) + [ ][ ]∑ +−−+−
=

2
1 )1()1(288792n

i ini  
 
 
 

 From Table 1, one can compute S3 as follows: 
S3 = 216n +528(n − 1) + [ ][ ]∑ +−−+−

=
2

1 )1()1(288792n
i ini  

322 )1(96)1(144)1(25213284)1(360 −−−+−−++−= nnnnnnn  
 

Notice that in computing the Wiener index of G[n], we should 
consider 4S3, Figure 1. 
 To compute S4, we assume that Di and Ei, 1 ≤ i ≤ n, denote the set 
of vertices in the ith row of two different arm tubes in G[n]. Using a similar 
argument as above, we assume that RiSj denote the summation of distances 
between vertices of Di and Ej, 1 ≤ i, j ≤ n. For computing S4 it is enough to 
compute RiSj, for 1 ≤ i, j ≤ n. In Table 2, the occurrence of RiSj in S4 is computed. 
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Table 2. The Number of RiSj in Computing S4. 
 

# Rows The Number of RiRj 
1 1224 
2 1224+2(1224+288)+(1224+2.288) 
3 1224+2(1224+288)+3(1224+2.288)+2(1224+3.288)+(1224+4.288) 
M  M  
n i)288)(2n(1224n

1i 1)(in
1i 1)288)(ii(1224 −+∑ = −+∑ = −+  

 
Therefore,  

.)1(288)1(86412241872)1(1224 22 +++−−−+=

−+∑ −+∑ −+= ==
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i)288)(2n(12241)(i1)288)(ii(1224S n
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Figure 1. The Molecular Graph of Le1.1(Op(Q2.0(T)))_TU(3,3); n=3. 

 
Figure 2. The Core. Figure 3. The Subgraph K.  

  
Figure 4. The Subgraph L. Figure 5. The Subgraph M. 
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Finally, we notice that in computing the Wiener index of G[n], we 

should consider 
4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 S4 (Figure 1), thus 6S4. We are now ready to state our 

main result. 
 

Theorem. The Wiener index of the molecular graph of nanojunction G[n] is 
computed as follows: 

W(G[n]) = 1920n3 + 8352n2 + 11856n + 5664. 
Proof. By above calculations W(G[n]) = S1 + 4S 2 + 4S 3 + 6S4. Thus, a simple 
calculation will prove the result. 
 
CONCLUSIONS 
 

In this paper the Wiener index of a carbon nanojunction is computed 
for the first time. To the best of our knowledge it is the first paper considering 
the Wiener index of such nanostructures into account. A powerful method 
for this calculation is presented which is extendable to other nanojunctions. 
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