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ABSTRACT. The Cluj polynomials CJe(x) and indices are calculable by either 
summation CJeS(x) or multiplication CJeP(x) of the sets of non-equidistant 
vertices related to the endpoints of any edge e=(u,v) in the graph. A third 
polynomial, the (vertex) PIv(x), is related to CJeS. In this paper, a procedure 
based on orthogonal cuts is used to derive the three above polynomials and 
indices in the molecular graph of a dendrimer.  
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INTRODUCTION 
 

Cluj matrices and indices have been proposed by Diudea twelve years 
ago. A Cluj fragment [1-4] pjiCJ ,,  collects vertices v lying closer to i than to j, 
the endpoints of a path p(i,j). Such a fragment collects the vertex proximities of 
i against any vertex j, joined by the path p, with the distances measured in 
the subgraph D(G-p): 

{ }),(),();( )()(,, vjDviDGVvvCJ pGpGpji −− <∈=   (1) 

In trees, pjiCJ ,,  denotes sets of (connected) vertices v joined with j 
by paths p going through i. The path p(i,j) is characterized by a single 
endpoint, which is sufficient to calculate the unsymmetric matrix UCJ. 

In graphs containing rings, the choice of the appropriate path is quite 
difficult, thus that path which provides the fragment of maximum cardinality 
is considered: 
  pj,i,

p
CJmax=

ji,
[UCJ]               (2) 

When path p belongs to the set of distances DI(G), the suffix DI is 
added to the name of matrix, as in UCJDI. When path p belongs to the set 
of detours DE(G), the suffix is DE. When the matrix symbol is not followed by a 
suffix, it is implicitly DI. The Cluj matrices are defined in any graph and, except 
for some symmetric graphs, are unsymmetric and can be symmetrized by 
the Hadamard multiplication with their transposes5 
 

SMp = UM • (UM)T     (3) 
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If the matrices calculated on edges (i.e., on adjacent vertex pairs) 
are required, the matrices calculated on paths must be multiplied by the 
adjacency matrix A (which has the non-diagonal entries of 1 if the vertices 
are joined by an edge and, otherwise, zero) 

SMe = SMp • A      (4) 
The basic properties and applications of the above matrices and 

derived descriptors have been presented elsewhere [6-11]. Notice that the 
Cluj indices, previously used in correlating studies published by TOPO GROUP 
Cluj, were calculated on the symmetric matrices, thus involving a multiplicative 
operation. Also, the symbol CJ (Cluj) is used here for the previously denoted 
CF (Cluj fragmental) matrices and indices.  

Our interest is here related to the unsymmetric matrix defined on 
distances and calculated on edges UCJe  

UCJe = UCJp • A     (5) 
which provides the coefficients of the Cluj polynomials [12,13] (see below).  
 
CLUJ POLYNOMIALS 

 

 A counting polynomial can be written in a general form as: 
( ) ( ) k

kP x m k x= ⋅∑       (6) 
 It counts a graphical property, partitioned in m sets of extent k, of which 
re-composition will return the global property. As anticipated in introduction, 
the Cluj polynomials count the vertex proximity of the both ends of an edge 
e=(u,v) in G; there are Cluj-edge polynomials, marked by a subscript e (edge), 
to be distinguished to the Cluj-path polynomials (marked by a subscript p), 
defined on the concept of distance DI or detour DE in the graph [2,5].  

The coefficients m(k) of eq. (6) can be calculated from the entries of 
unsymmetric Cluj matrices, as provided by the TOPOCLUJ software program 
[14] or other simple routines. In bipartite graphs, a simpler procedure enabling 
the estimation of polynomial coefficients is based on orthogonal edge-cutting. 
The theoretical background of the edge-cutting procedure is as follows. 

A graph G is a partial cube if it is embeddable in the n-cube nQ , which 
is the regular graph whose vertices are all binary strings of length n, two 
strings being adjacent if they differ in exactly one position.15 The distance 
function in the n-cube is the Hamming distance. A hypercube can also be 
expressed as the Cartesian product: 21KWQ n

in == .  
For any edge e=(u,v) of a connected graph G let nuv denote the set 

of vertices lying closer to u than to v: { }( ) | ( , ) ( , )uvn w V G d w u d w v= ∈ < . 

It follows that { }( ) | ( , ) ( , ) 1uvn w V G d w v d w u= ∈ = + . The sets (and 
subgraphs) induced by these vertices, nuv and nvu, are called semicubes of 
G; the semicubes are called opposite semicubes and are disjoint [16,17]. 
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A graph G is bipartite if and only if, for any edge of G, the opposite 
semicubes define a partition of G: ( )uv vun n v V G+ = = . These semicubes 
are just the vertex proximities (see above) of (the endpoints of) edge 
e=(u,v), which the Cluj polynomials count. 
 In bipartite graphs, the opposite semicubes can be estimated by an 
orthogonal edge-cutting procedure, as shown in Figure 1. The set of edges 
intersected by an orthogonal line is called an (orthogonal) cut Cn and 
consists of (topologically) parallel edges; the associate number counts the 
intersections with the orthogonal line. In the right hand part of Figure 1, there 
are three numbers in the front of brackets, with the meaning: (i) symmetry; 
(ii) occurrence (in the whole structure) and (iii) n, the number of edges cut-off 
by an ortogonal line. The product of the above three numbers will give the 
coefficients of the Cluj polynomials. The exponents in each bracket represent 
the number of points lying to the left and to the right of the corresponding 
ortogonal line segment. A similar procedure has been used by Gutman and 
Klavžar to calculate the Szeged index of polyhex graphs [18]. 
 

 
 
Figure 1. Edge-cutting procedure in the calculus of CJ polynomials of a bipartite graph 
 

Three different counting polynomials can be defined on the vertex 
proximities/semicubes in bipartite graphs, which differ by the operation used in 
re-composing the edge contributions: 

(i) Summation, and the polynomial is called Cluj-Sum (Diudea et al. 
[12,13,19,20]) and symbolized CJeS: 

( )( ) n v ne e
e eCJ S x x x −= +∑     (7) 

 (ii) Pair-wise summation, with the polynomial called (vertex) Padmakar-
Ivan [21,22] (Ashrafi [23-26]) and symbolized PIv: 

( )( ) n v ne e
v ePI x x + −= ∑      (8) 

 (iii) Product, while the polynomial is called Cluj-Prod and symbolized CJeP: 
  ( )( ) n v ne e

e eCJ P x x −= ∑      (9) 

  CJe S(x) = 3·2·3(x5+x121)+ 3·2·6(x16+x110)+ 
                     3·2·8(x31+x95)+ 3·2·8(x47+x79)+ 
                     3·1·8(x63+x63) 
   CJe S’(1) = 21924; CJe S’’(1) = 1762320 

 
        PIv(x) = 3·2·3(x5+121)+ 3·2·6(x16+110)+ 
                     3·2·8(x31+95)+ 3·2·8(x47+79)+ 
                     3·1·8(x63+63) 
      PIv’(1) = 21924; PIv’’(1) = 2740500 

 
   CJe P(x) = 3·2·3(x5·121)+ 3·2·6(x16·110)+ 
                     3·2·8(x31·95)+ 3·2·8(x47·79)+ 
                     3·1·8(x63·63) 
  CJe P’(1) = 489090 
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Because the opposite semicubes define a partition of vertices in a 
bipartite graph, it is easily to identify the two semicubes in the above formulas: 
nuv=ne and nvu=v-ne, or vice-versa.  

The first derivative (in x=1) of a (graph) counting polynomial provides 
single numers, often called topological indices.  

It is not difficult to see that the first derivative (in x=1) of the first two 
polynomials gives one and the same value, however, their second derivative 
is different (see Figure 1) and the following relations hold in any graph [20]: 

(1) (1)e vCJ S PI ′′ = ; (1) (1)e vCJ S PI ′′′′ ≠    (10) 
The number of terms, CJe(1)=2e, is twice the number given by PIv(1) 

because, in the last case, the endpoint contributions are summed together 
for any edge in G (see (7) and (8)).  

Clearly, the third polynomial is more different; notice that Cluj-Prod 
CJeP(x) is precisely the (vertex) Szeged polynomial Szv(x), defined by 
Ashrafi et al. [24-26] This comes out from the relations between the basic 
Cluj (Diudea [2,5]) and Szeged (Gutman [5,27]) indices:  

 (1) ( ) ( ) (1)e e vCJ P CJ DI G Sz G Sz ′′ = = =     (11) 
Recall the definition of the vertex PIv index: 

, , ,( ) (1)v v u v v u u v
e uv e uv

PI G PI n n V E m
= =

′= = + = ⋅ −∑ ∑   (12) 

where nu,v, nv,u count the non-equidistant vertices vs. the endpoints of 
e=(u,v) while m(u,v) is the number of vertices lying at equal distance from 
the vertices u and v. All the discussed polynomials and indices do not count 
the equidistant vertices, an idea introduced in Chemical Graph Theory by 
Gutman. In bipartite graphs, since there are no equidistant vertices vs any 
edge, the last term in (12) will disappear. The value of PIv(G) is thus maximal 
in bipartite graphs, among all graphs on the same number of vertices; the 
result of (12) can be used as a criterion for checking the “bipatity” of a graph. 
 
APPLICATION 

 

The three above polynomials and their indices are calculated on a 
dendritic molecular graph, a (bipartite) periodic structure with the repeat 
unit v0=8 atoms, taken here both as the root and branching nodes in the 
design of the dendron (Figure 2, see also refs. [27-30]). 

Formulas collect the contributions of the Root, the internal (Int) and 
external (Ext) parts of the structure but close formulas to calculate first 
derivative (in x=1) of polynomials were derived for the whole molecular graph. 
Formulas for calculating the number of vertices, in the whole wedge or in local 
ones, and the number of edges are also given. Examples, at the bottom of 
Tables 1 and 2, will enable the reader to verify the presented formulas.  
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Figure 2. A dendritic wedge, of generation r=4; v=248; e=278. 

Table 1. Formulas for counting CJeS and PIv polynomials in a dendritic D wedge graph 
( , ) ( ) ( ) ( )e e e eCJ S D x CJ S Root CJ S Int CJ S Ext= + +

1 1 2 2 5 5 /2 1 /2 1( ) ( ) ( ) 1 2 ( ) 2 2 ( )v v v v v
eCJ S Root x x x x x x x x− − − − += + + + + ⋅ ⋅ + + ⋅ ⋅ +  

1
3 ( 3) 5 ( 5)( 1) 1 1

1

2 ( 2) 1 ( 1)( 1) 1 1 1 1 1 1

( ) {2 2 2 [ ] 2 2 2 [ ]

2 2 1 {[ ] [ ] [ ]}}

r
v v v v v vr d r dd d d d

e
d

v v v v v v v v vr d d d d d d d

CJ S Int x x x x

x x x x x x

−
+ − + − − −− − + + +

=

− − − − − − −− + + + + + + +

= ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + +

⋅ ⋅ ⋅ + + + + +

∑  

2 ( 2)3 3 0 0

1 ( 1)0 0 0 0

( ) 2 3 2 ( ) 2 1 1 {[ ]

[ ] [ ]}

v v vr v r
e

v v v v v v

CJ S Ext x x x x

x x x x

− − −−

− − − −

= ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + +

+ + +
 

1
( 1)

1
(1) ( ) (8 18 2 9 2 ) (18 2 10)

r
r d r r

e e
d

CJ S CJ S D v v v e
−

− +

=

′ = = ⋅ + ⋅ + ⋅ = ⋅ ⋅ − = ⋅∑
3 1( , ) 2 (2 1)rv v D r += = − ; 32 (2 1); 1,2,..d

dv d= − = ( ) 18 2 10re D = ⋅ −  
 
 

Example:  
v(r=3)=120; e(r=3)=134; v(r=4)=248; e(r=4)=278 

3 12 (2 1)( ) (18 2 10) ; (1)
rv r

v vPI x e x x PI v e
+ − ′= ⋅ = ⋅ − ⋅ = ⋅  

 

Example:  
CJeS(x,r=3)=(1x1+1x119)+(1x2+1x118)+(48x3+48x117)+(2x5+2x115)+(8x6+8x114)+(8x7+8x113)
+(8x8+8x112)+(16x11+16x109)+(8x19+8x101)+(4x22+4x98)+(4x23+4x97)+(4x24+4x96)+(8x27+8x93) 
+(4x51+4x69)+(2x54+2x66)+ (2x55+2x65)+(2x56+2x64) + (4x59+4x61)  
CJeS’(1,r=3)=16080; CJeS’(1,r=4)=68944. 

Table 2. Formulas for counting CJeP polynomial in a dendritic D wedge graph 
( , ) ( ) ( ) ( )e e e eCJ P D x CJ P Root CJ P Int CJ P Ext= + +

( )( )( ) n v ne e
e eCJ P G x −= ∑  

1( 1) 2( 2) 5( 5) ( /2 1)( /2 1)( ) 1 2 [ ] 2 2 [ ]v v v v v
eCJ P Root x x x x− − − − += + + ⋅ ⋅ + ⋅ ⋅

1
( 3)( ( 3)) ( 5)( ( 5))( 1) 1 1

1

( 2)( ( 2)) ( 1)( ( 1)) ( )( )( 1) 1 1 1 1 1 1

( ) {2 2 2 [ ] 2 2 2 [ ]

2 2 1 {[ ] [ ] [ ]}}

r
v v v v v vr d r dd d d d

e
d

v v v v v v v v vr d d d d d d d

CJ P Int x x

x x x

−
+ − + − − −− − + + +

=

− − − − − − −− + + + + + + +

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ + +

∑  

( 2)( ( 2))3( 3) 0 0

( 1)( ( 1)) ( )0 0 0 0

( ) 2 3 2 ( ) 2 1 1 {[ ]
[ ] [ ]}

v v vr v r
e

v v v v v v

CJ P Ext x x
x x

− − −−

− − − −

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +

+
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2(1) ( ) 3626 2 256 2 3872 4
1792 4 1120 2 99

r r r
e e

r r

CJ P CJ P D
r r

′ = = ⋅ + ⋅ − ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ +

 

Example:  
CJeP(x,r=3)=x119+x236+48x351+2x575+8x684+8x791+8x896+16x1199+8x1919+4x2156+4x2231+4x2304

+ 8x2511+4x3519+2x3564+2x3575+2x3584+4x3599 

CJeP’(1,r=3)=168627; CJeP’(1,r=4)=1039107. 
 

CONCLUSIONS 
 

Two Cluj polynomials CJe(x) and indices, defined on vertex proximities/ 
semicubes, are calculable by either summation CJeS(x) or multiplication 
CJeP(x) of the sets of non-equidistant vertices related to the endpoints of 
any edge e=(u,v) in the graph. A third polynomial, the (vertex) PIv(x), was 
shown to be related to the CJeS. A procedure based on orthogonal cuts, 
enabled us to derive the three above polynomials and indices in the molecular 
graph of a dendrimer. The procedure is applicable only in bipartite graphs.  
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