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OMEGA POLYNOMIAL IN CRYSTAL-LIKE NETWORKS

MAHBOUBEH SAHELI *, MODJTABA GHORBANI ?
MONICA L. POP®, MIRCEA V. DIUDEA®

ABSTRACT. Omega polynomial Q(G, X), defined by Diudea in Carpath. J.

Math., 2006, 22, 43-47, counts topologically parallel edges eventually forming
a strip of adjacent faces/rings, in a graph G=G(V,E). The first and second
derivatives, in x=1, of Omega polynomial enables the evaluation of the
Cluj-llmenau CI index. Analytical close formulas for the calculation of this
polynomial in two hypothetical crystal-like lattices are derived.
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INTRODUCTION

Design of polyhedral units, forming crystal-like lattices, is of interest in
crystallography as many metallic oxides or more complex salts have found
application in chemical catalysis. Various applied mathematical studies have
been performed, in an effort to give new, more appropriate characterization of
the world of crystals. Recent articles in crystallography promoted the idea
of topological description and classification of crystal structures.’® They
present data on real but also hypothetical lattices designed by computer.

The geometry and polyhedral tiling is function of the experimental
conditions and can be designed by dedicated software programs. Such a
program, called Cage Versatile CV-NET, was developed at TOPO Group Cluj,
Romania. It works by net operations, as a theoretical support.

Three basic net/map operations Leapfrog Le, Quadrupling Q and Capra
Ca, associated or not with the more simple Medial Med operation, are most often
used to transform small polyhedral objects (basically, the Platonic solids) into more
complex units. These transforms preserve the symmetry of the parent net.>**

The article is devoted to the study of two new double periodic crystal-
like network, by using a topological description in terms of the Omega counting
polynomial.

OMEGA POLYNOMIAL

A counting polynomial is a representation of a graph G(V,E), with
the exponent k showing the extent of partitions p(G), O p(G) = P(G) of a
graph property P(G) while the coefficient p(k) are related to the number of
partitions of extent k.
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P()= p(k) K" (1)

Let G be a connected graph, with the vertex set V(G) and edge set

E(G). Two edges e=(u,v) and f=(x,y) of G are called codistant (briefly: e co f)
if the notation can be selected such that*?

d(v,x) =d(v,y)+1=d(u,x) +1=d(u,y) 2
where d is the usual shortest-path distance function. The above relation co
is reflexive (e co e) and symmetric (e co f) for any edge e of G but in
general is not transitive.

A graph is called a co-graph if the relation co is also transitive and
thus an equivalence relation.
Let C(e):={f OE(G); f cog be the set of edges in G that are

codistant to e[J E(G) . The set C(e) can be obtained by an orthogonal edge-

cutting procedure: take a straight line segment, orthogonal to the edge e,
and intersect it and all other edges (of a polygonal plane graph) parallel to e.
The set of these intersections is called an orthogonal cut (oc for short) of G,
with respect to e.

If G is a co-graph then its orthogonal cuts C,,C,,...,C, form a partition
of E(G): E(G)=CUC0.UC, GnCj=0,i#].

A subgraph HOG is called isometric, if d, (u,v) =d;(u,v), for any
(u,v) OH ; itis convex if any shortest path in G between vertices of H belongs

to H. The relation co is related to ~ (Djokovi¢*®) and @ (Winkler') relations.*

Two edges e and f of a plane graph G are in relation opposite, e op
f, if they are opposite edges of an inner face of G. Then e co f holds by the
assumption that faces are isometric. The relation co is defined in the whole
graph while op is defined only in faces/rings.

Relation op will partition the edges set of G into opposite edge strips
ops, as follows. (i) Any two subsequent edges of an ops are in op relation; (ii)
Any three subsequent edges of such a strip belong to adjacent faces; (iii) In a
plane graph, the inner dual of an ops is a path, an open or a closed one
(however, in 3D networks, the ring/face interchanging will provide ops which
are no more paths); (iv) The ops is taken as maximum possible, irrespective of
the starting edge. The choice about the maximum size of face/ring, and the
face/ring mode counting, will decide the length of the strip.

Also note that ops are qoc (quasi orthogonal cuts), meaning the
transitivity relation is, in general, not obeyed.

The Omega polynomial*®*” Q(X) is defined on the ground of opposite

edge strips ops S.,S,....S in the graph. Denoting by m, the number of ops of
cardinality/length s=|S|, then we can write

Q(x)=Z:SmD(S (3)
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The first derivative (in x=1) can be taken as a graph invariant or a
topological index:

QM=) ms=|EG) 4)
An index, called Cluj-llmenau,*? CI(G), was defined on Q(X) :
cl@) ={ [Q@P -[Q'® +Q"®]} 5)

In tree graphs, the Omega polynomial simply counts the non-
opposite edges, being included in the term of exponent s=1.

Main Results

The nets herein discussed were built up by combinations of map
operations.

Net A. The unit of this net is an isomer of cuboctahedron (which is the medial of
Cube and Octahedron). The net is constructed by identifying some squares
so that the net appears as “translated” on the Z-axis, each time one row
(Figure 1)

333a 333b
Figure 1. Net A; unit 111 (top) and 333 (bottom)

The computed data for the Omega polynomial of this net were rationalized
as in the formulas presented below and Table 1.

a=1l = Q(G,x)=4x"+8x*+2x°
Q(G X) =4a(2a-1)x" +(2a° + 78 +3a—4) ¢ +a™? + @ +(q-) &2 (g)
|[E(G)|F Q' (G1) =21a° +13a” - 2a (7)
Cl (G) =441a° +389a° + 291a* - 5a° — 272a° - 8a +80 (8)
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Table 1. Omega polynomial and CI index of the Net A: Examples

Omega Polynomial Cl
4x* +8x% + 2x° 916
24X + 46%2 + 22X + 2x'® +1x* 44264
60x" +122x2 +3x® +3x* +2x%| 437060
112X +248%% + 4x® + 4x%0 +3x1%8| 2274544
180x* + 436x% +5x™ +5x%* + 4x%¥2| 8280740
264x* +698x2 + 6x* +6x% +5x*P| 23966456
364x* +1046x2 + 7x'% + 7x1% + 6x>2| 59104804
480x* +1492x2 +8x'%° +8x21° + 7x728|129524240

O N | [W|N| D

Net B. The unit of this net is as for the case A but the edges sharing triangles were
deleted. Moreover, the net is constructed not translated (Figure 2). Note, these
networks and only double periodic, as can be seen from bottom rows of figures.

The computed data for the Omega polynomial of this net were

rationalized as in the formulas presented below and Table 2.

a=1 = Q(G,x)=2x*+2x*

0 (G, X) — 4§ X(10+4(a—2)) iy 2X2a(2a+1) +1X16a3 (9)
i=1
|E(G)|=Q' (G1) =24a° +4a® = 4a’(ba+1) (10)
IV(G) |-8a%(a+1) (11)
Q" (G,1) = 256a° +6; s, %4 a*-8a’ 3420 2+2a (12)
Cl (G) =320a° 64212 55 160 1602+ 322 -84
3 3 (13)
8a(40a 5400 2 o ﬂa—lj
3 3 3
Table 2. Omega polynomial and Cl index of the Net B: Examples
a Omega Polynomial Cl
1 %8 + 2x8 584
2 4X10 +2X20 +1X128 25680
3 AXY + 4x% + 2x®2 + 1% 273784
4 4X18 +4X36 +4X54 +2)(72 +1X1024 1482912
5 AXZ +4X™M +4X% + 4% + 2x10 + 1% 5527720
6 AXD + AX5 + 4X78 + 4x1% + 4x1P 4 2x156 4 13456 16246256
7 AXP + 4% + 4XP + 4x120 + 4% + 4180 4 Dx210 4 155488 40497240
8 Ax3 + A% + 4X%2 + 4x10 4 4% + 4% + 4x%B + 2% 272 +1xB12 89447744
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222a 222b
Figure 2. Net B; unit 111 (top) and 222 (bottom)

CONCLUSIONS

Omega polynomial can be used in topological description of polyhedral
crystal networks.
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