
STUDIA UBB. CHEMIA, LV, 4, 2010 
 
 

THE OMEGA POLYNOMIAL OF THE CORCOR DOMAIN 
OF GRAPHENE 

 
 

MAHBOUBEH SAHELIa, ALI REZA ASHRAFIa*, MIRCEA V. DIUDEAb 
 
 

ABSTRACT. An opposite edge strip ops with respect to a given edge of a 
graph is the smallest subset of edges closed under taking opposite edges 
on faces. The Omega polynomial is a counting polynomial whose k-th coefficient 
is the number m(G,k) of ops containing k-edges. In this paper an exact formula 
for the Omega polynomial of the molecular graph of a new type of graphene 
named CorCor is given. As a consequence, the PI index of this nanostructure 
is computed. 
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INTRODUCTION 

 

Throughout this paper, a graph means a simple connected graph. 
Suppose G is a graph and u, v are vertices of G. The distance d(u,v) is defined 
as the length of a shortest path connecting u and v in G. A graph can be 
described by a connection table, a sequence of numbers, a matrix, a polynomial 
or a derived unique number which is called a topological index. When we 
describe a graph by a polynomial as P(G,x) = Σkm(G,k)xk, then we must find 
algorithms to compute the coefficients m(G,k), for each k, see [1-3]. 

Suppose G is a connected bipartite graph, with the vertex set V(G) 
and edge set E(G). Two edges e = uv and f = xy of G are called co-distant 
(briefly: e co f ) if d(v,x) = d(v,y) + 1 = d(u,x) + 1 = d(u,y). It is far from true 
that the relation "co" is equivalence relation, but it is reflexive and symmetric.  

Let C(e) = { f ∈ E(G) | f co e} denote the set of edges in G, co-
distant to the edge e ∈ E(G). If relation “co” is an equivalence relation then 
G is called a co-graph. Consequently, C(e) is called an orthogonal  cut oc 
of G and E(G) is the union of disjoint orthogonal cuts. If two consecutive 
edges of an edge-cut sequence are opposite, or “topologically parallel” within 
the same face/ring of the covering, such a sequence is called an opposite 
edge strip ops which is a quasi-orthogonal cut qoc strip. This means that 
the transitivity relation of the “co” relation is not necessarily obeyed. Any oc 
strip is an op strip but the reverse is not always true. 

Let m(G,k) denote the multiplicity of a qoc strip of length k. For the 
sake of simplicity, we define m = m(G,k) and e = |E(G)|. A counting polynomial 
can be defined in simple bipartite graphs as Ω(G,x) = Σemxk, named Omega 
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polynomial of G. This polynomial was introduced by one of the present 
authors (MVD) [4]. Recently, some researchers computed the Omega and 
related polynomials for some types of nanostructures [5-10].  

In this paper, we continue our earlier works on the problem of 
computing Omega polynomials of nanostructures. We focus on a new type of 
nanostructures named CorCor, a domain of the graphene – a 2-dimensional 
carbon network, consisting of a single layer of carbon atoms, and compute 
its Omega polynomial, Figure 1. Our notation is standard and mainly taken 
from the standard books of graph theory.  

 
 Main Results and Discussion 

 

 In this section, the Omega polynomial of G[n] = CorCor[n] with n layers 
(Figure 1) is computed. At first, we notice that the molecular graph of G[n] has 
exactly 42n2 – 24n + 6 vertices and 63n2 – 45n + 12 edges. The molecular 
graph G[n] is constructed from 6n −3 rows of hexagons. For example, the 
graph G[3] has exactly 15 rows of hexagons and the number of hexagons 
in each row is according to the following sequence: 

 

2, 5, 9, 10, 11, 12, 12, 11, 12, 12, 11, 10, 9, 5, 2 
 

 The (3n – 1)th row of G[n] is called the central row of G[n]. This row 

has exactly 3
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real number x, ⎡ ⎤x  denotes the smallest integer greater or equal to x. The 
central hexagon of G[n] is surrounded by six hexagons. If we replace each 
hexagon by a vertex and connect such vertices according to the adjacency 
of hexagons, then we will find a new hexagon containing the central 
hexagon of G[n]. Next consider the adjacency relationship between the 
hexagons of the second layer of G[n] and construct a new hexagon containing 
the last one and so on, see Figure 1. The hexagons constructed from this 
algorithm are called the big hexagons. By our algorithm, the hexagons of 
G[n] are partitioned into the following two classes of hexagons: 

a) The hexagons crossing the edges of big hexagons, i.e. those 
depicted by thick line.  

b) The hexagons outside the big hexagon. 

 
Figure 1. The Molecular Graph of CorCor[3]. 
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One can see that the number of rows inside and outside big 

hexagons are equal to 4
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n2n4(4n6 , respectively. From Figure 1, one can see 

that the molecular graph of CorCor[n] can be partitioned into six equal parts 
with the same number of hexagons. If we consider one half of this graph 
then three cases of these six parts must be considered. Define three 
matrices  and   as follows: 

• A is an ⎟⎟
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The entries corresponding to the hexagons of CorCor[n] are 
equal to 1, and other entries are zero, see Figure 2. As an example, 
the matrix A6 is as follows: 
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A″ = [cij] is an 
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It is easy to see that the number of hexagons in the central row of 

G[n] is 3
3
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Figure 2. Construction of the Matrices A6, 6A′  and 6A ′′  
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Thus for computing the omega polynomial of G[n], it is enough to 
compute iS ′  and .iS ′′  By a simple calculations, one can see that Ω(G[1]) = 6x3 
+ 3x4 and Ω(G[2]) = 6x3 + 6x6 + 15x8. So, we can assume that n ≥ 3. Our main 
proof consider three cases that n ≡ 0 (mod 3), n ≡ 1 (mod 3) and n ≡ 2 (mod 3). 

We first assume that n ≡ 0 (mod 3). In this case the number of rows 
in the big hexagons is 7n/3 – 2. By definition of An, if 1 ≤ j ≤ 4n/3 – 2 then 
we have ⎡ ⎤.2/jS j =′  If 4n/3 – 1 ≤ j ≤ 7n/3 – 2 then we can define 

knj +−= 23/4 , where 1 ≤ k ≤ n. Thus, 
 ),22(3/2 −−=′ knSi  where k ≡ 1 or 2 (mod 3), 
 ),12(3/2 −−=′ knSi  where k ≡ 0 (mod 3). 

To compute ,jS ′′  we consider four cases that 1 ≤ j ≤ n/3 – 1, j = n/3, 
j = n/3 + 1 and n/3 + 2 ≤ j ≤ 7n/3 – 2. In the first case ,2 jS j =′′  and for the 
second and third cases we have .3/2njS =′′  For the last case, we assume 

that j = n/3 + k + 1, 1 ≤ k ≤ 2n – 3. Then ⎡ ⎤ ⎡ ⎤.3/3/23/3/ knknnjS −=−−=′′  
To compute the omega polynomial, we define the following polynomials: 
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To simplify these quantities, two cases that n is odd or even are 
considered. If n is even then 
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if n is odd, then 
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Using a similar argument as above, if n ≡ 1 (mod 3) then for even n,  
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and for odd n, 
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Finally, if n ≡ 2 (mod 3) then for even n, 
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It is now possible to simplify our calculations as follows: 
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We now apply above calculations to compute the PI index of G[n]. We have: 
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