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ABSTRACT. New cages are designed by repeating P4 map operation and 
finalized by Le operation. The energy of some small non-classical fullerenes, 
tessellated according to above sequences of map operations was evaluated at 
the level of semiempirical method PM3. The topology of the networks is 
described in terms of Omega counting polynomial. Close formulas for this 
polynomial and the Cluj-Ilmenau index derived from it, as well as formulas 
to calculate the net parameters, are given.  
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INTRODUCTION 

 

It is well established that covering/tessellation of fullerenes (nanostructures, 
in general) dictates the stability and reactivity of these molecules [1-3]. Covering 
and its modifications enables understanding of chemical reactions (their 
regioselectivity) occurring in nanostructures, particularly in carbon allotropes. In 
this respect, TOPO GROUP Cluj has developed some software programs [1], 
based on either well-known or original map operations [4-7]. A map M is a 
discretized (closed) surface [1]. 

We recall here the only two operations used in designing the proposed 
tessellation of the cages derived from the Platonic solids: tetrahedron T, 
octahedron Oct, Cube C, dodecahedron Do and icosahedron Ico. 

Polygonal P4 mapping is achieved by adding a new vertex in the center 
of each face and one point on the boundary edges; next, connecting the central 
point with one vertex on each edge, results in quadrilaterals covering [1,6]. 

Leapfrog Le is a composite operation, firstly described by Eberhard 
(1891) [8] and next by Fowler [9] and Diudea [6], that can be achieved as 
follows: add a point in the center of each face and join it with all the corners of 
a face, next truncate this point together with the edges incident in it (Figure 1). 
The original face will appear twisted by π/s, (s being the folding of the original 
face) and surrounded by polygons of 2d0 folding, where d0 is the degree of 
the parent vertices (in a regular graph).  
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P3 Du

 
 

Figure 1. The Leapfrog Le operation on a pentagonal face 
 

If the parent cage is a d0 regular graph, the number of vertices in Le(M) 
is d0 times larger than in the original map M, irrespective of the tessellation 
type. Note that in Le(M) the vertex degree is always 3, as a consequence of 
the involved triangulation P3. In other words, the dual Du of a triangulation 
is a cubic net [2]. It is also true that truncation always provides a trivalent map. 
The leapfrog operation can be used to insulate the parent faces by surrounding 
(most often hexagonal) polygons.  

 
CAGE BUILDING 

 

Cages are built up, starting from the Platonic solids, by repeating the 
P4 operation and finalized by Le operation; the sequence [10] of operations 
can be written as Le(P4(M))k). Due to dual pairs: Tetrahedron-Tetrahedron, 
T-T; Cube-Octahedron, C-Oct and Dodecahedron-Icosahedron, Do-Ico, there 
will be only three series of transformed cages (Figures 2 to 4, non-optimized). 
One can see that the central face/ring (in red) is twice the folding of parent face; 
similarly, the corner face (in blue) is twice the degree d0 of parent vertices. 
These faces are distanced to each other by squares and octagons. The 
counting of faces/rings will be given below by the Ring polynomial [1]. 

 

  
Figure 2. Le(P4(T))2); v=192 ; 3D-vue (left) and orthoscopic vue (right) 

 

   
Figure 3. 3D-vue of Le(P4(C))2); v=192 ; (left) and Le(P4(Oct))2); v=192 ; (right) 
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Figure 4. 3D-vue of Le(P4(Do))2); v=960 ; (left) and Le(P4(Ico))2); v=960 ; (right) 

 

ENERGETIC STABILITY 
 

The calculations reported here were done at PM3 level of theory 
and serve only as arguments for the topological description of the interesting 
cages built up by Le((P4(M))k) sequence of operations. Data, for the smallest 
representatives of this series (Figure 5) are listed in Table 1; for comparison, 
data for C60, are also given. 

 

   
Le(P4(T)) Le(P4(C)) Le(P4(Do)) 

Figure 5. The smallest cages built up by Le((P4(M))k). 
 
 

It can be seen that the proposed cages show a moderate stability (by 
the values of heat of formation per number of atoms HF/N and HOMO-LUMO 
gap HLGAP), lower than that of C60, the reference structure in nanoscience [1].  

Regarding aromaticity, even C60 shows a low value of the geometry-
based HOMA (harmonic oscillator model of aromaticity) index [11-13]; the new 
cages appear as anti-aromatic and this result is in agreement with the massive 
presence in structure of anti-aromatic faces f4 and f8, along with some aromatic 
f6 and f10 (cf. Hückel theory) [14-16].  

 
Table 1. Data for structures built up by (P4)

kLe and C60; heat of formation per number  
of atoms HF/N; HOMO-LUMO gap HLGAP; point group symmetry Sym 

 

 Name 
 

N 
atoms 

HF/N  
(kcal/mol) 

HLGAP 
(eV) 

Sym. HOMA POAV1 

1 Le(P4(T)) 48 24.386 5.948 Oh -0.871 9.457 
2 Le(P4(C)) 96 20.633 5.917 Oh -0.868 4.831 
3 Le(P4(Do)) 240 19.597 6.047 Ih -0.879 2.067 
4 C60 60 13.514 6.596 Ih 0.169 8.257 
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The last column in Table 1 refers to the strain of cage covering, in 
terms of Haddon’s theory [17-19]. Clearly, the larger cage is the most 
relaxed structure and this is supported by the lowest value of HF/N. 

Computations were done by MOPAC2009 software package [20]. 
Calculations at a higher level of quantum chemistry are in progress in our lab. 
 
OMEGA POLYNOMIAL 

 

In a connected graph G(V,E), with the vertex set V(G) and edge set 
E(G), two edges e = uv and f = xy of G are called codistant e co f  if they 
obey the relation [21]: 

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (1) 
which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e co 
f then f co e. In general, relation co is not transitive; if “co” is also transitive, thus 
it is an equivalence relation, then G is called a co-graph and the set of edges 

});({:)( ecofGEfeC ∈=  is called an orthogonal cut oc of G, E(G) being the 

union of disjoint orthogonal cuts: 1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ = ∅ ≠ . 
Klavžar [22] has shown that relation co is a theta Djoković-Winkler relation [23,24]. 

We say that edges e and f of a plane graph G are in relation opposite, 
e op f, if they are opposite edges of an inner face of G. Note that the relation 
co is defined in the whole graph while op is defined only in faces. Using the 
relation op we can partition the edge set of G into opposite edge strips, ops. An 
ops is a quasi-orthogonal cut qoc, since ops is not transitive. 

Let G be a connected graph and 1 2, ,..., kS S S be the ops strips of G. Then 
the ops strips form a partition of E(G). The length of ops is taken as maximum. 
It depends on the size of the maximum fold face/ring Fmax/Rmax considered, so 
that any result on Omega polynomial will have this specification. 
 Denote by m(G,s) the number of ops of length s and define the 
Omega polynomial as [25-33]: 

( , ) ( , ) s
s

G x m G s xΩ = ⋅∑        (2) 

Its first derivative (in x=1) equals the number of edges in the graph: 

( ) ( ) ( )' ,1 ,
s

G m G s s e E GΩ = ⋅ = =∑         (3) 

On Omega polynomial, the Cluj-Ilmenau index [21], CI=CI(G), was defined: 
2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω + Ω      (4) 

RESULTS AND DISCUSSION 
 

 Cage parameters 
 

 Since the starting cages of this study are the graphs of Platonic 
solids, let’s present the net parameters of these structures in Table 2, as 
|p0| parameters, p being vertices v (of degree d), edges e and faces f (of various 
folding s). By applying the sequence of operations Le(P4(M))k), the transformed 
maps will show all the vertex degree d=3. Formulas for the value of the other 
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parameters are given in Table 3. Observe, in the dual pair, the face of 
parent becomes the vertex of transform and this interchanging operates 
also on the corresponding parameters: s0f0 becomes d0v0, while the number 
of edges remains unchanged. 

Table 2. Platonic solid graph parameters 

Graph Vertices |v0| Degree d0 Edges |e0| Ring folding s0 Faces  |f0| 
T 4 3 6 3 4 
C 8 3 12 4 6 

Oct 6 4 12 3 8 
Do 20 3 30 5 12 
Ico 12 5 30 3 20 

Table 3.Transforms of the Platonic solid graphs by Le(P4(M))k) 

M Vertices |v0| Edges |e0| Faces  |f0| 
T 12 4k×  18 4k×  6 4 2k× +  

C 24 4k×  36 4k×  12 4 2k× +  

Do 60 4k×  90 4k×  30 4 2k× +  

Formula 0 0| | 4kv s f= ×  0| | 3 4ke e= × ×  
0| | 4 2kf e= × +  

Oct 24 4k×  36 4k×  12 4 2k× +  
Ico 60 4k×  90 4k×  30 4 2k× +  

Formula 0 0| | 4kv d v= ×  
0| | 3 4ke e= × ×  

0| | 4 2kf e= × +  

 
Ring polynomial  
 

The ring polynomial for the graphs originating in trivalent Platonics 
is as follows: 

( ) ( )4 6 8
4( (( (T)) ), ) 3 4 8 3 4 6k a aR Le P x x x x= × + + × −   (5) 

( ) ( )4 6 8
4( (( (C)) ), ) 6 4 8 6 4 6k a aR Le P x x x x= × + + × −   (6) 

( ) ( )4 6 8 10
4( (( (Do)) ), ) 15 4 20 15 4 30 12k a aR Le P x x x x x= × + + × − +  (7) 

Generalizing, for the graphs transformed from the trivalent Platonics, 
the formula for ring polynomial is of the form: 

( )
( ) 0

2( 1) 4 6
4 0 0 0 0

21 1 8
0 0 0 0

( (( ( ( :3))) ), ) 2

2 (2 1) (2 1)

k k

sk k k

R Le P G d x s f x v x

s f e x f x

−

− −

= × + +

× − + − +
 (8) 

 Now, considering the relation between the dual pairs, for the trigonal 
Platonics we have: 

( )
( ) 0

2( 1) 4 6
4 0 0 0 0

21 1 8
0 0 0 0

( (( ( ( :3))) ), ) 2

2 (2 1) (2 1)

k k

dk k k

R Le P G f x d v x f x

d v e x v x

−

− −

= × + +

× − + − +
 (9) 
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 Omega Polynomial 
 

The Omega polynomial (calculated at Rmax[8]) for the graphs transformed 
from the trivalent Platonics is as follows: 

( ) 22 1 3 2
4( (( (T)) ), ) 3(2 1) 6 4(2 1)

k kk k kLe P x x x
+ − ×Ω = − + + −   (10) 

( ) ( )1 23 2 1 2
4( (( (C)) ), ) 4(2 1) 6 6(2 1) 3

k kk k kLe P x x x
+ +× −Ω = − + + − +  (11) 

1 35 2 1 5 2 2
4( (( (Do)) ), , [8]) 6(2 1) 12(2 1) 15

k k kk k kLe P x R x x x
+ +× − ×Ω = − + − + (12) 

Generalizing, we have: 
0

0

10
0 1

0

21
4 0

1
1 2

6 ( 1) 20 0
0

0

1 ( 1)
( (( (G)) ), ) (2 1) 3

2

1
(2 1)

6
3

k

k
k

s
sk k

s
s

sk

Le P x f x

s e
s x x

s

+
+

×−

 + + − ×   − ×  

 + −Ω = − + + 
 

 + + − +      
  

  (13) 

And for CI we have: 
2

4( (( (T)) )) 324 4 6 4 (11 2 1) 18 4k k k k kCI Le P = ⋅ − ⋅ ⋅ − − ⋅  (14) 
2

4( (( (C)) )) 1296 4 12 4 (16 2 1) 36 4k k k k kCI Le P = ⋅ − ⋅ ⋅ − − ⋅  (15) 
2

4( (( (Do)) )) 8100 4 30 4 (25 2 1) 90 4k k k k kCI Le P = ⋅ − ⋅ ⋅ − − ⋅  (16) 

The Omega polynomial, calculated at Rmax=10, in case M=Do, is as follows. 
2

2

2 5( ) 2 3
4

2 10( )

( (( (Do)) ), , [10]) 6( 2) 15

6( 1)

kk k p

k p

Le P x R k p x x

k p x

− +

−

Ω = − − ⋅ + ⋅ +

− − ⋅
 (17) 

2 2 4 2
4( (( (Do)) ),1, [10]) 120 180 120 2 120 90 90k kLe P R p k p k k p′Ω = − + ⋅ − + + (18) 

4 2 4 6
4

2 3 2 2 2 2
4

( (( (Do)) ), [10]) 2250 1800 900 750

900 750 2250 960 2 ( ( (( (Do)) ),1, [10]))

k

k k

CI Le P R k p k p k k

p p k p Le P R

= − + − +
′+ − − ⋅ + Ω

(19) 

 

 Table 4 lists some examples for the formulas derived within this 
paper. Computations were made by Nano Studio software [34]. 
 

Table 4. Examples for the herein derived formulas 

Le((P4(M))k) 
M ; k ; Rmax 

V Omega polynomial CI Ring polynomial 

T; k=3 ; R[8] 768 12x24+27x32 1292544 192x4+8x6+210x8 
C; k=3 ; R[8] 1536 21x32+34x48 5208576 384x^4+8x6+402x8 
Do; k=3;R[8] 3840 30x8+30x24+36x40+42x80 32832000 960x4+20x6+930x8+12x10 
Do; k=3;R[10]  36x40+15x64+42x80 32789760  
T; k=4; R[8] 3072 28x48+51x64 20960256 768x4+8x6+786x8 
C; k=4; R[8] 6144 45x64+66x96 84142080 1536x4+8x6+1554x8 

Do; k=4; R[8] 15360 30x16+30x48+84x80+90x160 527923200 3840x4+20x6+3810x8+12x10 
Do; k=4; R[10]  84x80+15x128+90x160 527754240  
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CONCLUSIONS 

In this article, new cages designed by Le((P4(M))k) sequence of map 
operations are reported. The energy of some small non-classical fullerenes, 
tessellated according to the above map operations was evaluated at the 
level of semiempirical method PM3; it was shown that these non-classical 
fullerenes have a moderate stability, less than the reference C60 fullerene, 
a result pertinent for a tessellation with massive anti-aromatic faces R4 and 
R8. The topology of the networks was described in terms of Omega counting 
polynomial. Close formulas for this polynomial and the Cluj-Ilmenau index, 
as well as formulas to calculate the net parameters, were given.  
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