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ABSTRACT. Design of a hypothetical carbon crystal lattice, embedded in the 
P-type surface, was performed by identifying two opposite open faces of a 
unit, of octahedral symmetry, by the aid of Nano Studio software. The topology 
of the net and its co-net, thus obtained, was characterized by Omega and 
Sadhana counting polynomials. 
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INTRODUCTION 
 

 Among the carbon allotropes, discovered in the nano-era, fullerenes 
(zero-dimensional), nanotubes (one dimensional), graphene (two dimensional) 
and spongy carbon (three dimensional) were the most challenging [1,2]. Inorganic 
compounds including oxides, sulfides, selenides, borates, silicates, etc. of many 
metals, also found applications as nano-structured functional materials [3-12].  

Zeolites are natural or synthetic alumino-silicates with an open three-
dimensional crystal structure. Zeolites are micro-porous solids known as 
"molecular sieves." The term molecular sieve refers to the property of these 
materials to selectively sort molecules, based primarily on a size exclusion 
process. This is due to a regular structure of pores, of molecular dimensions, 
forming channels [13-17]. 

The rigorous and often aesthetically appealing architecture of 
crystal networks attracted the interest of scientists in a broad area, from 
crystallographers, to chemists and mathematicians. 
 The present study deals with a hypothetical carbon crystal-like 
nanostructure, of which topology is described in terms of Omega and Sadhana 
counting polynomial. 
 
NETWORK DESIGN 
 

 The hypothetical carbon crystal network herein discussed was built 
up by identifying two opposite open faces of a unit (Figure 1, left), of octahedral 
symmetry, by the aid of Nano Studio software [18], also enabling their embedding 
in the P-type surface [1,2], belonging to the space group Pn 3 m.  
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As any net has its co-net, this was identified to the structure presented 
in Figure 1, right. Indeed, when constructing the two infinite networks (Figure 2), 
a perfect superposition (Figure 2, central) can be evidenced: in fact is one and 
the same infinite network, differences appearing only at the boundaries. Thus, 
the topological characterization will be done on cubic (k,k,k) domains, 
separately, for the net and its co-net (see below).  

 

v=98; e=120; f6=8; f8=12 v=144; e=192; f6=20; f8=24 
Figure 1. Units of the net (left) and co-net (right) 

 

  
 

Figure 2. The net (3,3,3- left), superimposed net&co-net (2,2,2-central)  
and co-net (3,3,3- right) in a cubic (k,k,k) domain. 

 
COUNTING POLYNOMIALS 
 

A counting polynomial [19] is a representation of a graph G(V,E), with 
the exponent k showing the extent of partitions p(G), )()( GPGp =∪  of a 
graph property P(G) while the coefficient ( )p k  are related to the number of 
partitions of extent k. 

( ) ( ) k
k

P x p k x= ⋅∑       (1) 
Let G be a connected graph, with the vertex set V(G) and edge set E(G). 

Two edges e=(u,v) and  f=(x,y)  of G are called codistant (briefly: e co f ) if 
the notation can be selected such that [20]:  

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (2) 
where d is the usual shortest-path distance function. The above relation co 
is reflexive (e co e) and symmetric (e co f) for any edge e of G but in general is 
not transitive. 

A graph is called a co-graph if the relation co is also transitive and thus 
an equivalence relation. 
 Let });({:)( ecofGEfeC ∈=  be the set of edges in G that are 
codistant to )(GEe∈ . The set C(e) can be obtained by an orthogonal edge-
cutting procedure: take  a straight line segment, orthogonal to the edge e, and 
intersect it and all other edges (of a polygonal plane graph) parallel to e. 
The set of these intersections is called an orthogonal cut (oc for short) of G, 
with respect to e.  
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If G is a co-graph then its orthogonal cuts kCCC ,...,, 21  form a 

partition of E(G):   1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ = ∅ ≠ . 

A subgraph H⊆ G is called isometric, if ( , ) ( , )H Gd u v d u v= , for any 

( , )u v H∈ ; it is convex if any shortest path in G between vertices of H 
belongs to H. The relation co is related to ~ (Djoković [21]) and Θ  (Winkler [22]) 
relations [23,24].  

Two edges e and f of a plane graph G are in relation opposite, e op 
f, if they are opposite edges of an inner face of G. Then e co f holds by the 
assumption that faces are isometric. The relation co is defined in the whole 
graph while op is defined only in faces/rings. Note that John et al. [20]  
implicitly used the “op” relation in defining the Cluj-Ilmenau index CI.  

Relation op will partition the edges set of G into opposite edge strips 
ops, as follows. (i) Any two subsequent edges of an ops are in op relation; 
(ii) Any three subsequent edges of such a strip belong to adjacent faces; 
(iii) In a plane graph, the inner dual of an ops is a path, an open or a closed 
one (however, in 3D networks, the ring/face interchanging will provide ops which 
are no more paths); (iv) The ops is taken as maximum possible, irrespective 
of the starting edge. The choice about the maximum size of face/ring, and 
the face/ring mode counting, will decide the length of the strip.  

Also note that ops are qoc (quasi orthogonal cuts), meaning the 
transitivity relation is, in general, not obeyed. 

The Omega polynomial [25-27] ( )xΩ is defined on the ground of 
opposite edge strips ops 1 2, ,..., kS S S in the graph. Denoting by m, the number 
of ops of cardinality/length s=|S|, then we can write 

( ) s
s

x m xΩ = ⋅∑      (3) 

On ops, another polynomial, called Sadhana Sd(x) is defined [28,29]: 
| ( )|( ) E G s

s
Sd x m x −= ⋅∑     (4) 

The first derivative (in x=1) can be taken as a graph invariant or a topological 
index (e.g., Sd’(1) is the Sadhana index, defined by Khadikar et al. [30]): 

 

(1) ( )
s
m s E G′Ω = ⋅ =∑      (5) 

(1) (| ( ) | )
s

Sd m E G s′ = ⋅ −∑     (6) 

An index, called Cluj-Ilmenau [20], CI(G), was defined on ( )xΩ : 
2( ) [ (1)] [ (1) (1)]{ }CI G ′ ′ ′′= Ω − Ω +Ω      (7) 

In tree graphs, the Omega polynomial simply counts the non-opposite 
edges, being included in the term of exponent s=1.  
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POLYNOMIALS IN THE P-TYPE SURFACE NETWORKS 
 

Omega and Sadhana polynomials are herein calculated at Rmax[6]. 
Formulas for the two infinite networks are listed in Tables 1 and 2, with 
examples at the bottom of these tables.   

 In the discussed network, one can see that the coefficient a(X1) gives 
the number of octagons, by counting the edges not enumerated in the even 
faces. Next, a(X2)/3 provides the number of hexagons while a(X4)/4 counts 
the number of tubular necks (each bearing four anthracene units) joining 
the nodes of the net. In the co-net, the most informative is a(X4)/12, giving 
the total number of the nodes while (a(X4)/12)1/3=k, the co-net parameter. 

 
Table 1. Omega and Sadhana polynomials in the net 

Formulas  
2 3 2 2 4

max
2 3 2 2 4

( , [6]) (72 12( 1)) 24 12 ( 1)

12 ( 5) 24 12 ( 1)

X R k k X k X k k X
k k X k X k k X

Ω = + − + + −

= + + + −
 

' 2(1) 12 (9 1)k kΩ = + ; '' 2(1) 48 (4 3)k kΩ = −  
2 4 3 2( ) 12 (972 216 12 25 11)CI G k k k k k= + + − +  

2 2 2

2 1 3 2 2 4
max

2 12 (9 1) 1 3 12 (9 1) 2 2 12 (9 1) 4

( , [6]) (72 12( 1)) 24 12 ( 1)

12 ( 5) 24 12 ( 1)

e e e

k k k k k k

Sd X R k k X k X k k X

k k X k X k k X

− − −

+ − + − + −

= + − + + −

= + + + −
 

2 3 2 3 2(1) 12 (9 1)(48 48 1) (48 48 1)Sd k k k k e k k′ = + + − = + −  
k Omega polynomial: examples e(G) CI(G) 
1 72X1+24X2 120 14232 
2 336X1+192X2+48X4 912 829872 
3 864X1+648X2+216X4 3024 9137664 
4 1728X1+1536X2+576X4 7104 50449728 
 Sadhana polynomial: examples Sd’(1) 

1 72X119+24X118 11400 
2 336X911+192X910+48X908 524400 
3 864X3023+648X3022+216X3020 5222448 
4 1728X7103+1536X7102+576X7100 27272256 
 

The number of atoms in the cubic domains (k,k,k) of the two lattices can 
be calculated by the formulas given in Table 3; some examples are available. 
 

Table 2. Omega and Sadhana polynomials in co-net 
Formulas  

2 3 2 3 4
max

2 3 2 3 4

( , [6]) (96 12( 1)) 24 12

12 ( 7) 24 12

X R k k X k X k X
k k X k X k X

Ω = + − + +

= + + +
 

' 2(1) 12 (9 7)k kΩ = + ; '' 3(1) 192kΩ =  
2 4 3 2( ) 12 (972 1512 588 25 7)CI G k k k k k= + + − −  

2 2 2

2 1 3 2 3 4
max

2 12 (9 7) 1 3 12 (9 7) 2 3 12 (9 7) 4

( , [6]) (96 12( 1)) 24 12

12 ( 7) 24 12

e e e

k k k k k k

Sd X R k k X k X k X

k k X k X k X

− − −

+ − + − + −

= + − + +

= + + +
 

2 3 2 3 2(1) 12 (9 7)(48 84 1) (48 84 1)Sd k k k k e k k′ = + + − = + −  
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k Omega polynomial: examples e(G) CI(G) 
1 96X1+24X2+12X4 192 36480 
2 432X1+192X2+96X4 1200 1437264 
3 1080X1+648X2+324X4 3672 13474728 
4 2112X1+1536X2+768X4 8256 68140992 
 Sadhana polynomial: examples Sd’(1) 

1 96X191+24X190+12X188 25152 
2 432X1199+192X1198+96X1196 862800 
3 1080X3671+648X3670+324X3668 7531272 
4 2112X8255+1536X8254+768X8252 36450240 
 

Table 3. Number of atoms | ( ) |v V G=  
Net 

2 224 (4 3( 1)) 24 (3 1)kv k k k k= ⋅ + − = ⋅ +  
co-Net 

2 2(144 72( 1)) 72 ( 1)kv k k k k= + − = +  
k 1 2 3 4   

v for net 96 672 2160 4992   
v for co-net 144 864 2592 5760   
 
CONCLUSIONS 
 

In this paper, the design of a hypothetical carbon crystal lattice, embedded 
in the P-type surface, achieved by identifying two opposite open faces of a unit, of 
octahedral symmetry, by the aid of Nano Studio software, was presented. The 
topology of the net and its co-net, thus obtained, was characterized by Omega 
and Sadhana counting polynomials. The ops strips proved to be informative about 
the construction of these infinite carbon nanostructures. 
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