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ABSTRACT. Design of a hypothetical crystal network, by using Trs(P4(M)) 
sequence of map operations, is presented. It is shown that the octahedral 
monomer is the most stable, among the similar structures designed from 
the Platonic solids, as hydrogenated species, and all these have a moderate 
stability, between adamantane and C60 fullerene, as calculated at the PM3 
level of theory. The topology of the network is described in terms of Omega 
polynomial, function of the net parameters. Close formulas for this polynomial 
and examples are tabulated. 
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INTRODUCTION 
In the last two decades, several new carbon allotropes have been 

discovered and studied for applications in nano-technology. Among the 
carbon structures, fullerenes (zero-dimensional), nanotubes (one dimensional), 
graphene (two dimensional) and spongy nanostructures (three dimensional) 
were the most studied [1,2]. Inorganic compounds also attracted the attention of 
scientists. Recent articles in crystallography promoted the idea of topological 
description and classification of crystal structures [3-7].  

The present study deals with a hypothetical crystal-like nano-carbon 
structure, designed by a sequence of map operations [8-11], of which topology 
is described in terms of Omega polynomial. 

 

OMEGA POLYNOMIAL 
Let G(V,E) be a graph, with V(G) and E(G) being the sets of vertices/ 

atoms and edges/bonds, respectively. Two edges e and f of a plane graph 
G are in relation opposite, e op f, if they are opposite edges of an inner face 
of G. Relation op will partition the edges set of G into opposite edge strips ops, 
as follows. (i) Any two subsequent edges of an ops are in op relation; (ii) Any 
three subsequent edges of such a strip belong to adjacent faces; (iii) In a plane 
graph, the inner dual of an ops is a path, an open or a closed one (however, 
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in 3D networks, the ring/face interchanging will provide ops which are no 
more paths); (iv) The ops is taken as maximum possible, irrespective of the 
starting edge [12-18].  

The Ω-polynomial [12] is defined on the ground of opposite edge 
strips ops 1 2( ) , ,..., kS G S S S= in the graph. Denoting by m the number of ops of 
length s=|S|, then we can write 

( ) s
s

x m xΩ = ⋅∑       (1) 
The first derivative (in x=1) can be taken as a graph invariant or a 

topological index; in this case, it equals the number of edges in the graph. 
(1) ( )

s
m s e E G′Ω = ⋅ = =∑     (2) 

On Omega polynomial, the Cluj-Ilmenau index [13], CI=CI(G), was defined: 
2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω       (3) 

The first derivative (in x=1) can be taken as a graph invariant or a 
topological index: 

 (1) ( )
s
m s E G′Ω = ⋅ =∑      (4) 

In tree graphs, the Omega polynomial simply counts the non-opposite 
edges, being included in the term of exponent c=1.  

 
LATTICE BUILDING AND MONOMER STABILITY 

The lattice was constructed by using the unit designed with the net 
operation sequence Trs(P4(M)), where M=Oct (Octahedron). More about 
map/net operations, the reader can find in refs. [8-11]. 

The net (Figure 1) was built up by identifying the identical (quadrilateral) 
faces of the unit structure The crystal-like structure shows oriented hollows, 
as those encountered in zeolites, natural alumino-silicates widely used in 
synthetic chemistry as catalysts.  

The unit involved in these constructions, namely Trs(P4(M)), M=Oct, 
as a hydrogenated structure, shows moderate stability as given by their heat of 
formation HF, total energy TE and HOMO-LUMO Gap HLGAP, calculated 
at the PM3 level of theory (Table 1).  

 

  
Figure 1: Network Trs(P4(M)); [2,2,2]; M=Octahedron, in two different views. 

 

For example, the total energy per heavy atoms of the structures in 
Table 1 are between the values of adamantane (-3305.19 kcal/mol), which 
is the most related small structure (see Figure 2, left, in red) and C60 (-2722.45 
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kcal/mol), the standard molecule in nanostructures. The same is true about the 
HOMO-LUMO gap. Calculations by using a density functional-based tight 
binding method combined with the self-consistent charge technique (SCC-
DFTB) on hydrogenated units of diamond and a diamond-like network19 
have shown the same ordering of stability as given by PM3 approach; thus, 
our results reported here can be considered as pertinent ones. 

 

Table 1. Quantum Chemistry PM3 data for some units designed by Trs(P4(M)): 
Heat of Formation HF, Total energy TE and HOMO-LUMO Gap HLGAP 

M 
 

N-heavy
atoms 

HF 
(kcal/mol) 

HF/N 
heavy 

TE 
(kcal/mol) 

TE/N 
heavy 

HLGAP 
(eV) 

Sym. 

Ico 110 1216.81 11.06 -328026 -2982.05 11.79 Ih 
Oct 44 448.67 10.19 -131248 -2982.92 12.17 oh 
T 22 308.48 14.022 -65540 -2979.09 11.99 Td 

 
OMEGA POLYNOMIAL IN Trs(P4(M)) Network 

The Omega polynomial (calculated at Rmax[4]) for the investigated 
network is as follows: 

2)2(63

32

)1(3)1(4

)1)2((24))2()1((12)1(24),(
axaxa

xaaxaaaxaaxG

−+−+

+−+−++++=Ω     (5) 

2( ,1) | ( ) | 36 ( 1)G E G a a′Ω = = +                (6) 
6 5 4 3 2( ) 1296 2544 1344 144 144 120 24CI G a a a a a a= + + − + − +                          (7) 

The above formulas can be verified with the examples listed in Table 2. 
Calculations were performed by our Nano Studio20 software program. 
 

   
Figure 2. Platonic structures transformed by Trs(P4(M)) sequence of map 

operations: M=Tetrahedron T (left); M=Octahedron Oct (central) and 
M=Icosahedron Ico (right). The red color is only to show the related substructures. 

 

Table 2. Examples of Omega polynomial and CI calculation 
a Omega polynomial CI 
1 

21248 xx+ 5088 
2 

16632 342472144 xxxxx ++++  185064 
3 

36632 63296156288 xxxxx ++++  1668912 
4 

64632 9108216264480 xxxxx ++++  8250168 
5 

100632 12256384963720 xxxxx ++++  29025024 
6 

144632 155006005521008 xxxxx ++++  81963528 
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CONCLUSIONS 
A hypothetical crystal network was built up by using a repeat unit 

designed by Trs(P4(M)) sequence of map operations. It was shown that the 
octahedral monomer (i.e., the repeat unit of this network) is the most stable (as 
hydrogenated species), among the similar structures derived from the Platonic 
solids, and all these have a moderate stability, between adamantane and C60 
fullerene, as calculated at the PM3 level of theory. The topology of the network 
was described in terms of Omega polynomial, function of the net parameters. 
Close formulas for this polynomial and examples were tabulated. Omega 
polynomial description proved to be a simple and efficient method in topological 
characterization of new designed nano-structures. 
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