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ABSTRACT. Design of two crystal-like networks was achieved by embedding a 
zig-zag Z-unit and its corresponding armchair A-unit, of octahedral symmetry, in 
the P-type surface, by means of the original software Nano Studio. The 
hypothetical networks, thus obtained, were characterized in their topology 
by Omega counting polynomial. 

 
Keywords: crystal-like networks, Omega polynomials, topology 

 
 
 
 
INTRODUCTION 
 In the last two decades, novel carbon allotropes have been discovered 
and studied for applications in nano-technology. Among the carbon structures, 
fullerenes (zero-dimensional), nanotubes (one dimensional), graphene (two 
dimensional) and spongy carbon (three dimensional) were the most challenging 
[1,2]. Inorganic clusters, like zeolites, also attracted the attention of scientists. 
Recent articles in crystallography promoted the idea of topological description 
and classification of crystal structures [3-8]. 
 The present study deals with two hypothetical crystal-like nano-
carbon structures, of which topology is described in terms of Omega counting 
polynomial. 
 
BACKGROUND ON OMEGA POLYNOMIAL 

In a connected graph G(V,E), with the vertex set V(G) and edge set 
E(G), two edges e = uv and f = xy of G are called codistant e co f  if they 
obey the relation [9]: 

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (1) 
which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e co f 
then f co e. In general, relation co is not transitive; if “co” is also transitive, thus it 
is an equivalence relation, then G is called a co-graph and the set of edges 

});({:)( ecofGEfeC ∈=  is called an orthogonal cut oc of G, E(G) being 
the union of disjoint orthogonal cuts: 1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . 
Klavžar [10] has shown that relation co is a theta Djoković-Winkler relation [11,12]. 
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We say that edges e and f of a plane graph G are in relation opposite, e 
op f, if they are opposite edges of an inner face of G. Note that the relation 
co is defined in the whole graph while op is defined only in faces. Using the 
relation op we can partition the edge set of G into opposite edge strips, ops. 
An ops is a quasi-orthogonal cut qoc, since ops is not transitive. 

Let G be a connected graph and 1 2, ,..., kS S S be the ops strips of G. 
Then the ops strips form a partition of E(G).  The length of ops is taken as 
maximum. It depends on the size of the maximum fold face/ring Fmax/Rmax 
considered, so that any result on Omega polynomial will have this specification. 

Denote by m(G,s) the number of ops strips of length s and define 
the Omega polynomial as [13-15]: 

( , ) ( , ) s
s

G x m G s xΩ = ⋅∑      (2) 
Its first derivative (in x=1) equals the number of edges in the graph: 

( ) ( ) ( )' ,1 ,
s

G m G s s e E GΩ = ⋅ = =∑         (3) 
On Omega polynomial, the Cluj-Ilmenau index [9], CI=CI(G), was 

defined: 
2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω        (4) 

The Omega polynomial partitions the edge set of the molecular 
graph into opposite edge strips, by the length of the strips.  

 
OMEGA POLYNOMIAL IN TWO P-SURFACE CRYSTAL NETWORKS  

Design of two crystal-like networks was achieved by identifying the 
opposite open faces of a zig-zag Z-unit and its corresponding armchair A-
unit (Figure 1), of octahedral symmetry and embedding them in the P-type 
surface, with the help of original software Nano Studio [16] . 
 Omega polynomials for the repeat units of the Z_P and A_P structures 
(Figure 2) herein discussed are listed in Table 1. The polynomials are 
calculated at Rmax[8] as follows.  

In the Z_P structure, the term at exponent 1 counts the edges in 
odd faces/rings that are not counted in even rings. The exponent 2 refers to 
isolated even rings while the exponent 4 represents strips of three even-
membered faces/rings. 
 In the A_P structure, there are no odd faces so the polynomial has 
no terms at exponent 1. The exponent 6 represents strips of five even-
membered faces/rings.   
 

  
Figure 1. Units of the Z_P (left) and A_P (right) crystal-like structures 



OMEGA POLYNOMIAL IN P-TYPE SURFACE NETWORKS 
 
 

 213 

The polynomials are calculated on a cubic lattice of dimension (k,k,k), at 
Rmax[8]; following similar considerations and analyzing the calculations 
made by our original Nano Studio [16] software, we derived the formulas, 
listed in Table2, and provided examples for some k-values, as well.  
 

  
Figure 2. The Z_P (left) and A_P (right) crystal-like structures 

 
Table 1. Topological data for the units of Z_P and A_P structures 

Octahedral 
structure 

Vertices Edges Faces 
f8 

Open 
Faces 

Omega Polynomial 
Rmax[8] 

CI 

Z_P 120 168 12 6 421 123648 XXX ++  27840 
A_P 144 192 12 6 2 4 612 24 12+ +X X X  36000 

 
In the Z_P and A_P network structures, the term at exponent 8 

represent the number of edge strips of length 8; these strips cross only  f8 
when link 4 Z_P units, and cross faces f8 and f6 when link 4 A_P units 
respectively, so it is present starting with k=2. In case of Z_P net, the term 
at exponent 8 counts the large hollows, ordered as in zeolites, natural 
alumino-silicates, used as molecular sieves or in chemical catalysis. 

 
 

Table 2. Omega polynomial in Z_P and A_P networks 

Formulas for Z_P network  
2 1 2 2 2 4 2 8

max( , , [8]) 48 12 (4 2 1) 3 (5 3 4) 3 ( 1)Ω = + − + + + − + −X k R k X k k k X k k k X k k X  
)115(12)1(38)435(34)124(12248)1( 22222' −=−⋅+−+⋅++−⋅+=Ω kkkkkKkkkkk  

)42337(12)1( 2'' +−=Ω kkk  
)1613390675(48)( 2345 −+−+−= kkkkkkkCI  

Formulas for A_P network 

∑
=

−+ ++−+++=Ω
k

i

ik XkXkXkkXkkkXRkX
2

)12(41528242
max 2412)1(3)1(1212])8[,,(  

)115(12)1( 2' +=Ω kk  
)128033203(4)1( 23'' +−+=Ω kkkk  

)12777816710808100(4)( 2345 −+−−+= kkkkkkkCI  
k Omega polynomial: examples CI 
 Rmax[8], Z_P network  

1 48X+36X2+12X4 27840 
2 192X+312X2+132X4+6X8 1933728 
3 432X+1116X2+450X4+36X8 22567104 
4 768X+2736X2+1056X4+108X8 128288064 
5 1200X+5460X2+2040X4+240X8 492768960 
6 1728X+9576X2+3492X4+450X8 1478124000 
 Rmax[8] A_P network  
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 Table 2-continuation  
1 12X2+24X4+12X6 36000 
2 24X2+72X4+6X8+48X11+48X12 2199792 
3 36X2+144X4+36X8+72X12+108X16+72X20 24609456 
4 48X2+240X4+108X8+96X12+96X20+192X21+96X28 136947840 
5 60X2+360X4+240X8+120X12+120X20+300X26+120X28+120X36 519300960 
6 72X2+504X4+450X8+144X12+144X20+144X28+432X31+144X36+144X44 1544324400 
7 84X2+672X4+756X8+168X12+168X20+168X28+756X36+168X44+168X52 3882737712 
 
Formulas for the number of atoms in the two networks are given in Table 3. 
 

Table 3. Number of atoms | ( ) |v V G=  

Z_P network structures 
3120 kvk ⋅=  

A_P network structures

)1(24144 23 −⋅−⋅= kkkvk  
k 1 2 3 4 5 6 

v for Z_P 120 960 3240 7680 15000 25920 
v for A_P 144 1056 3456 8064 15600 26784 
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