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OMEGA POLYNOMIAL IN TITANIUM OXIDE NANOTUBES

M. GHORBANI*, M.A. HOSSEINZADEH", M.V. DIUDEA®

ABSTRACT. A new counting polynomial, called Omega Q(G,x ) , was recently
proposed by Diudea. It is defined on the ground of “opposite edge strips” ops.
Two related polynomials: Sadhana Sd(G,x)and Theta ®(G,x) polynomials
can also be calculated by ops counting. Close formulas for calculating these
three polynomials in infinite nano-structures resulted by embedding the
titanium dioxide pattern in plane, cylinder and torus are derived. For the
design of titanium dioxide pattern, a procedure based on a sequence of
map operations is proposed.

Keywords: Titanium oxide, Omega polynomial, Sadhana polynomial, Theta
polynomial

INTRODUCTION

Nano-era is a suitable name for the period started with the discovery of
Ceo fullerene and carbon nanotubes [1-3]. It opened a new gate for the science
and technology at nanometer scale with wide implications in the human
activities. After the discovery of carbon nanotubes, the question about the
possible existence of nanotubular forms of other elements was addressed
by scientists and they tried to obtain inorganic nanostructures [4-6]. Various
oxides, sulfides, selenides, borates, silicates, etc of many metals show very
ordered structures at the nano-scale. Many of these compounds form nanotubes,
similar to those of carbon: MX2, M=Mo, W, Ta, In, Zn, Ti, Cd, X=0, S, Se, Te,
CB., BN, etc. In the last years, oxides and other above mentioned inorganic
substances found applications in the design of nanostructured functional
materials as films, nanorods, porous systems, nanoclusters and nanocrystallites
or as nanofibers [7-13].

Among these nanostructures, the titanium nanotubular materials, called
“titania” by a generic name, are of high interest due to their chemical inertness,
endurance, strong oxidizing power, large surface area, high photocatalytic activity,
non-toxicity and low production cost. The applications of TiO, nanotubes
include photocatalysis, solar cells systems, nanoscale materials for lithium-ion
batteries, etc. The titanium oxide nanotubes were synthesized using various
methods and precursors [14-20], carbon nanotubes, porous alumina or polymer
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membranes as templates [21-27], anodic oxidation of Ti [28-30], sol—gel
technique [31-35] or sonochemical synthesis [36]. Models of possible growth
mechanisms of titanium nanotubes, the atomic structure of the nanotube walls
and their stacking mode are discussed [19,20,35]. TiO, nanotubes are
semiconductors with a wide band gap and their stability increases with
increasing of their diameters. The numerous studies on the production and
technological applications of nanotubular titania also require theoretical studies
on stability and other properties, the topological ones included [37-42].

DESIGN OF TITANIUM OXIDE LATTICE

A map M is a combinatorial representation of a (closed) surface. Several
transformations or operations on maps are known and used for various purposes.
We limit here to describe only those operations needed here to build the TiO,
pattern. For other operations, the reader is invited to consult refs [43-48].

Medial Med is achieved by putting new vertices in the middle of the
original edges. Join two vertices if the edges span an angle (and are consecutive
within a rotation path around their common vertex in M). Medial is a 4-valent
graph and Med(M) = Med(Du(M)).

Dualization of a map starts by locating a point in the center of each
face. Next, two such points are joined if their corresponding faces share a
common edge. It is the (Poincaré) dual Du(M). The vertices of Du(M) represent
faces in M and vice-versa.

Figure 1 illustrates the sequence of map operations leading to the TiO,
pattern: Du(Med(6,6)), the polyhex pattern being represented in Schlafli’s
symbols. Correspondingly, the TiO, pattern will be denoted as: (4(3,6)), squares
of a bipartite lattice of 3 and 6 connected atoms, while the medial pattern:
((3,6)4). Clearly, the TiO, pattern can be done simply by putting a point in the
centre of hexagons of the (6,6) pattern and join it alternately with the points
on the contour. It is noteworthy that our sequence of operations is general,
enabling transformation of the (6,6) pattern embedded on any surface and
more over, it provides a rational procedure for related patterns, to be exploited
in cage/cluster building.
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Figure 1. Way to TiO;, lattice: (left) polyhex (6,6) pattern; (central) Med(6,6); (rlght) Du(Med(6,6))

OMEGA AND RELATED POLYNOMIALS

Let G(V,E) be a connected graph, with the vertex set V(G) and edge
set E(G). Two edges e = uv and f= xy of G are called codistant e co f if
they obey the following relation [49,50]:
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d(v,x)=d(v,y)+1=du,x)+1=d(u,y) (1)

Relation co is reflexive, that is, e co e holds for any edge e of G; it is also
symmetric, if e co f then f co e. In general, relation co is not transitive, an
example showing this fact is the complete bipartite graph «,, . If “co” is also

transitive, thus an equivalence relation, then G is called a co-graph and the set of
edges C(e) ={f € E(G); f co e} is called an orthogonal cut oc of G, E(G) being
the union of disjoint orthogonal cuts: E(G) =Ci UG, L.V C, GNC; =D, i+ ).
Klavzar [51] has shown that relation co is a theta Djokovi¢-Winkler relation [52,53].

Let e = uv and f = xy be two edges of G which are opposite or
topologically parallel and denote this relation by e op f. A set of opposite
edges, within the same face/ring, eventually forming a strip of adjacent
faces/rings, is called an opposite edge strip ops, which is a quasi-ortogonal
cut goc (i.e., the transitivity relation is not necessarily obeyed). Note that co
relation is defined in the whole graph while op is defined only in a face/ring.
The length of ops is maximal irrespective of the starting edge.

Let m(G,s) be the number of ops strips of length s. The Omega
polynomial is defined as [54]:

QG x)=Y m(G,s)-x* (2)

S
The first derivative (in x=1) equals the number of edges in the graph
Q'(G,1) = Z m(G,s)-s =e=|E(G)| (3)

A topological index, called Cluj-llmenau,®® CI=CI(G), was defined on
Omega polynomial
CI(G) ={[Q(G, DT ~[Q(G,)+Q'(G, D]} (4)
An example is given in Figure 2, which illustrates just the pattern of
TiO, lattice.

Figure 2. TiO, pattern; counting polynomial examples:
Q(G,x) =3x> +3x°: V(G,1)=24=e(G); CI(G)=4T4-
Sd(G,x)=3x" +3x*: Sd'(G,1)=120 = Sd(G) -

O(G,x) =9x° +15x°: @'(G,1) =27 +75=102 = O(G)
The Sadhana index Sd(G) was defined by Khadikar et al. [56,57] as
8d(G) =2, m(G,s)(| E(G)|~s) (5)
where m(G,s) is the number of strips of length s. The Sadhana polynomial
Sd(G,x) was defined by Ashrafi et al. [58] as
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Sd(G,x)=Y. m(G,s)-x" (6)

Clearly, the Sadhana polynomial can be derived from the definition
of Omega polynomial by replacing the exponent s by |E(G)-s|. Then the
Sadhana index will be the first derivative of Sd(G, x) evaluated at x=1.

A third related polynomial is the Theta polynomial [59], defined in
co-graphs as

0(G,x) =Zss><m(G,S)-xS (7)

The aim of this study is to compute the Omega and its related counting
polynomials in TiO, lattice, embedded in the plane but also in the cylinder
and torus.

RESULTS AND DISCUSSION

We begin with the 2-dimensional graph, named K, (Figure 3). The
drawn by arrows.

2 3 4 . p

various types of ops are
1

€

Figure 3. The ops strips of a 2-dimensional graph K of Du(Med(6,6)) TiO2 pattern.
By definition of Omega polynomial and Table 1 one can see that:

Table 1. The number of ops e;, 1<i<6 in the graph K.

No. Number of ops Type of ops
q 2p+1 €1
2 é
: . €
2 2min{2p,q}-1
2p—q+l1 2g+1  2p=g=1 o
q-2p+1 4p+l  g>2p. :

Now, we can derive the following formulas for the counting polynomials
in the infinite 2-dimensional graph K:
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qxz””+2(x3+x5+...+x2q_])+(2p—61+1)x2q+1 2p>qg=>1

Q(K,x) = (8)
gx*P 428 + 0 + L+ X (g - 2p + DX qg=2p

qx\E(K)\—Zp-l + 2(X\E(K)\—3 +X\E(K)\—5 +...+X‘E(K)‘_2q+l)

+H(2p-g+ xR 2p>q=1

Sd(K,x)= (9)

qx\E(K)Hp-l +2(x\E(K)\*3 _}_x\E(K)H _’_m+x\E(K)Hp+1)

E(K)-4p-1

+(g-2p+1Dx q=2p

a(x)+203x" +..+2g-Dx*"N+2p—-g+1)Q2g+ x> 2p>g>1
0(K,x) = (10)
a(x)+20x" +..+@p-Dx""N+(g-2p+D@p+Dx*"" g>2p
in which a(x ) =g (2p +1)x ***' . Examples are given in Appendix.

We now consider the tubular structure G (Figure 4). Again the different
cases of ops are drawn. One can see that |S(e)| = 2p and |S(e)| = 2g+1.
On the other hand, there are q(e1) and 2p(e;) similar edges. This leads to
the formulas

Q(G,x)=q-x" +2p-x"" 1)
Sd(G,x)=q- LE@2 2p.x\E(G)\—2q_1 (12)
0(G,x) =2pq- x® + 2p(2q+1)- Xt (13)

Figure 5 illustrates the case of a torus, denoted by H; it shows that
there are two types of ops and their number is: [S(e4)| = 2p, |S(e2)|=2pq. On
the other hand, there are 2q similar edges for each of e4, e, respectively.
With the above considerations we have the following formulas:

Q(H ,x)=qx™ +2x™ (14)
Sd(H,x) = qX\E(H)\—Zp + 2x/EUI=2pa (15)
O(H,x)=2pgx™ + 4pqx™ (16)

CONCLUSIONS

Nano-structured titania can be described, in topological terms by the
aid of counting polynomials, such as Omega, Sadhana and Theta polynomials.

Close formulas for calculating these three polynomials in infinite nano-
structures resulted by embedding the titanium dioxide pattern in plane,
cylinder and torus are derived. A procedure based on a sequence of map
operations is proposed for the design of titanium dioxide pattern.
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Figure 4. The ops strips of the nanotube G=TU[p,q].
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Figure 5. The ops strips of the nanotorus H=T[p,q].
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APPENDIX

Examples for calculating Omega polynomial.

1. Case of infinite 2-dimensional graph K.

P04+ AT+ 2p—g+ )X

We have the Omega polynomial: 9

1.1.Case: 2p>qg > p,2|q,
If g =6, p =5 then, the graph is:

and
QG,x)=6x" +2(x" +x° +x" +x" +x") +5x"
1.2. Case: 2p>q>p,2]q,

Now if p = 4, q = 7 then, the graph is:

and
QG,x) =7 +2( +xX° +x" +x° +x7)+2x"

P+ X7+ X

4p+1

We have also % )+(q-2p+D)x
1.3.Case: 422p. Ifp=4,q=09then, the graph is:

and
QG,x)=9x" +2(x + X" +x" +x° +x" + 2" +x) + 2x"
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2. Case of nanotubes G [p,q].

We have the Omega polynomial: Q(G,x ) = qx™ + 2px**"!
Now, if p = 5, q = 4 then, the graph is:

and
Q(G,x)=4x" +10x°
Or, if p =6, q = 6 then, the graph is :

g

Q

N
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\ 1\
[{
1\

“'

0%

\ 1\

and
Q(G,x) =6x" +12x"
3. Case of nanotori H [p,q].

_ 2p 2pq
We have the Omega polynomial: Q(H ,x)=qx™ +2x
Now, if p = 4, q = 5 then, the graph is:
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and
Q(H,x)=5x"+2x*
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