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ABSTRACT. A shift of the frame in a polynucleotide sequence typically 
alters the codon content of the sequence. This provokes a question as to 
what sequence might be unaltered after shifting the frame. In fact, a linear 
sequence cannot exactly be so conserved – but there might be a possibility 
if it is a cyclic code subjected to a circular permutation, as we consider here. 
The solution is strikingly simple: A cyclic sequence of different nucleotides 
conserves a circular order of its codons under any shift of its frame if it has a 
length λ not divisible by 3 and is consecutively read κ times, or it is composed 
of κ repeated copies of a factor h of length λ, where κ is divisible by 3, while λ 
is not. For example, the sequence atcgatcgatcg has a factor atcg of length 
λ = 4 is repeated κ = 3 times. Translating this code without any shift gives 
isoleucine, aspartic acid, arginine, and serine, consecutively, or IDRS for short. 
The circular shift by 1 position results in SIDR, by 2 positions if produces RSID, 
and (here) at last, the circular shift by 3 positions gives DRSI. Apparently, all 
four translated codes of amino acids are the same relative to cyclic permutation. 
We conclude here discussing the cyclically invariant codes by noting that 
these can easily be enumerated using the famous Pólya’s theorem. 

 
Keywords: nucleotide sequence, codonic, frame shift, cyclically invariant, 
permutable  

 
 
 
INTRODUCTION  
 Nucleotide sequences of DNA (desoxyribonucleic acid) and RNA 
(ribonucleic acid) are constructed from four types of nucleotides denoted by 
the characters A, C, G, and either T or U, where options T or U are used in 
cases of DNA or RNA, respectively. According to the complementarity of two 
strands in DNA, these four characters comprise two complementary pairs: 
A & T (or U) and C & G. See, e. g., Ch. 13 in [1]. 
 A cyclic shift of the frame in an RNA polynucleotide sequence, in 
general, alters the resulted sequenced codon content, by which we mean 
the net number of codons of each different type. This provokes questions 
as to whether there are codes unaltered after shifting the frame, and, if so, 
then what codes. Typically, a linear sequence of codons cannot exactly be 
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so conserved – except possibly in certain circumstances. As announced in 
the title, cyclic sequences of nucleotides having this property do exist. 
Cutting such a cyclic sequence at an arbitrary position produces a linear 
factor f  which then might be read as a sequence of codons. But with an 
alternative cut, a shift of the frame by one or two nucleotide positions can 
under suitable circumstances give the same codon content (i. e., the same 
counts of acid type of codons -- and thence of each type of translated amino 
acid). Still one might imagine another scenario where a cyclic RNA is read 
without cutting, with the reading going round repeatedly – and this under 
different circumstances can again lead to codon conservation. That is, our 
considerations are connected with potential ways in which nature might 
create a kind of ‘selfcorrecting code’ for amino-acid content, or even codon 
sequences (up to cyclic permutation), such as to conserve the construction 
of proteins which are synthesized through translation of codons to amino 
acids. That is, regardless of the starting point, or reference frame choice for 
codon translation, the same result would be realized for a codonically invariant 
cyclic sequence. But also, instead of a cyclic RNA, one may also imagine a 
linear one having a similarly constructed, periodic factor whose frame shift 
produces the same circular shift of codons therein and thereby assures the 
same (apparently circular) order of a translated amino acid sequence. 
 
 
RESULTS AND DISCUSSION 

We begin with a selfevident statement: 

Lemma 0. A periodic cyclic sequence, of the length 3,≥  obtained by repetition 
of just one nucleotide conserves a fixed codonic content which does not 
alter under any shift of frame. 

Note that both of DNA and RNA normally contain (long) stretches of 
mononucleotide repeats; besides the conservation of codon content, they 
may play an important role in base composition and genetic stability of a 
gene and gene functions, etc.. However, it is not yet properly understood -- 
how nature keeps a fixed-frame reading of general-type codons to reproduce 
many times the same polypeptide molecules, in organisms. Here, we apply 
some combinatorial reasoning to comprehend certain details of this complex 
natural phenomenon. 
 The first result of this paper is the following statement: 
 

Lemma 1. Let f be a cyclic sequence of nucleotides with a length | f | not 
divisible by 3  and with not all nucleotides being the same. Then, there is 
conservation of a circular order of codons under any shift of frame if f  is 
consecutively read κ  times, where κ  is divisible by 3.  
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Proof: First, we address the case where the length of nucleotide sequence 
is not a multiple of 3,  say 3 1,k ±  with k  being a positive integer. First, choose 
a cyclic sequence f of length | | 3 1.f k= +  Starting from an arbitrary fixed point 
of the cycle, we can traverse 3k  characters, or k  complete codons, and 
have yet in reserve one spare nucleotide. Continuing cyclically, we utilize 
this remnant nucleotide as the first. Whence, codons in the second portion 
of k  codons are all passed with the shift of nucleotides by one position to 
the left, with respect to the distribution into codons in the first 3k -nucleotide 
string. Now, we have two remnant nucleotides, from the right “end” of which 
now constitute the first two nucleotides of the next codon. Making a third tour 
now of k  more codons along the same sequence of nucleotides produces a 
sequence of codons which stops at the same point where it was originally 
begun. That is, we have overall traversed a sequence of 3 1k +  complete 
codons where all the three possible shifts of the frame have been realized – 
meaning that the shifts have been made in a circular direction. Apparently, 
much the same holds true for a factor of length 3 1.k −  This completes the 
proof. 
 The next statement is related to the preceding one: 
 

Lemma 2. Let f be a cyclic nucleotide sequence obtained by the κ -fold 
repetition of a factor h  of a length | |h , let the nucleotides not all be the same, 
and let the whole sequence be read just once. Then, there is conservation 
of a circular order of codons under any shift of frame if κ  is a multiple of 3, 
while | |h  is not. 
 

Proof: First, take a sequence f  which is the κ -fold repetition of a factor h  
of a length | |h  not divisible by 3  and with κ  being a multiple of three, as in 
conditions of Lemma 1. Since the tour around such a κ -fold cycle is tantamount 
to the κ -fold rotation along a cycle of length h  (obtained by cyclically closing a 
factor ),h  the application of Lemma 1 gives here the proof of the statement. 
 It is convenient to merge both lemmas to state the following: 
 

Proposition 3. Let f be cyclic sequence of nucleotides. Then, f conserves 
a circular order of its codons under any shift of its frame if (0) all the nucleotides 
are the same, (1) f has a length λ  not divisible by 3  and is consecutively read 
κ  times, with κ  a multiple of 3, or (2) f is composed of κ  repeated copies of a 
factor h  of length ,λ  where κ  is divisible by 3, while λ  is not. 
 As a case in point, consider the sequence atcgatcgatcg; here, the 
factor atcg of length 4λ =  is repeated three times. Translating this code without 
any shift gives isoleucine, aspartic acid, arginine, and serine, consecutively, or 
IDRS for short. The circular shift by 1 position results in SIDR, by 2  positions 
produces RSID, and (here) at last, the circular shift by 3  positions gives DRSI. 
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Apparently, all the four translated codes of amino acids are the same relative 
to some circular permutation. Besides codon conservation, the circumstances 
of Proposition 3 lead to a further consequence: 
 

Proposition 4. Let f be a cyclic sequence of different nucleotides satisfying 
one of the conditions of Proposition 3. Then, the cyclic sequence q  of amino 
acids so translated from f is conserved under any cyclic shift of f  (with q  
defined only relative to circular order). 
 The Propositions 3 and 4 allow to conclude that a minimal linear factor 
g  of a nucleotide sequence which guarantees to produce, upon translation, the 
respective factor of the amino acid ‘with accuracy to a circular permutation’ takes 
the form ,g acccb=  where c is a factor of length | |c λ=  not divisible by 3;  and 
prefix a  & suffix b  factors of a total length | | | | 2a b+ =  (0 ; 2)a b= =  
correspond to the last and first, consecutive nucleotides of c, respectively. The 
adjective “minimal” stands here to allow circular shifts by 1 or 2  positions. If a  
(res. )b  is a longer factor of c  and | | | | ,a b λ+ ≥  then g  allows a (not minimal) 
number | | | |a b+  of circular permutations of the translated factor .g  
Accordingly, one or two ‘sparse’ nucleotides form codons with 2  or 1 external 
nucleotides, respectively. Codonic nucleotides of the factor g  encode a 
(periodic) factor of the respective amino acid sequence containing a not 
necessary integer number of repeated translates of .ccc  Combinatorially, just 
this controls producing circular permutations in a protein domain. 
 One might also consider the enumeration of the types of sequences 
of our Lemma 2, say, with the enumeration at fixed κ  & .λ  That is, we 
seek the number of equivalence classes of cyclic sequences, where two 
such sequences are equivalent if one can be obtained from the other via a 
cyclic permutation (i. e., a power of the permutation which cycles the 
members one unit along the sequence, with the last member permuted to 
the first). We let ,#κ λ  be the number of such equivalence classes consisting 
of κ  segments each of length ,λ  with κ  divisible by 3  and λ  not. Then: 
 

Proposition 5. Let ,#κ λ  be the number of equivalence classes of cyclic 

(nucleotide) sequences having κ  segments of length .λ  Then, , 1,# # .κ λ λ=    
Proof: Each circular shift of an arbitrary ( , )κ λ -sequence by one position is 
equivalent to asynchronous circular shift of every factor of length λ . Such a 
factor, if considered in a cyclic fashion, represents a (1, )λ -sequence, so that 
the number of distinct circular arrangements of nucleotides in both (fixed) 
( , )κ λ - and (1, )λ -sequences is the same. Since this is true for any ( , )κ λ -
sequence separately, it holds true for the entire set S  of all circularly 
nonequivalent ( , )κ λ -sequences with the set F  of their representative λ -
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factors (which are all distinct). With this one-to-one correspondence 
between the two sets, the proof is completed. 
 But now we note that 1,# λ  is solved by Pólya’s enumeration theory [2]. 
Indeed, a problem somewhat like this is a standard enumeration in many 
combinatorics texts: one ordinarily enumerates equivalence classes of 
beads on a necklace, with equivalence being determined by the 
dihedral group, rather than the cyclic group as here. The additional 
“reflective” permutations of the dihedral group are absent in our case, since 
our nucleotide “beads” have a direction (or orientation) along the sequence. 

But further, we might clarify a point concerning sequences of types 
( , )κ λ  and ( , )κ λ′ ′  with κ & κ′  each divisible by 3  while λ &λ′  not. In 
particular, it can turn out that some sequences can be of both types when 
there is a fixed total number of nucleotides , ,# # .Nκ λ κ λ′ ′= ≡  In particular, if N 

has a maximum power 1p >  of 3  as a divisor, then 3pN λ≡ ′′  with λ′′  not 
divisible by 3,  and sequences of type ( , )κ λ′′ ′′  (with 3 ,pκ′′ =  as both κ & κ′  
are divisible by ).κ′′  Indeed, all the sequences of a type ( , )κ λ  are again 
counted in those of type ( , )κ λ′ ′  if κ  is a divisor of κ′  Thus, we might introduce 
the count ,#κ λ  of cyclic sequences such that this includes no cyclic sequences 
of other types. By virtue of the Proposition 5, we can reduce this count to 
the enumeration of all cyclic (1, )λ -sequences that are a repetition of no 
block of length λ′  being a divisor of .λ  The calculation of ,# κ λ′  first includes 
determining the numbers 1,# λ′  for all distinct divisors λ′  of ;λ  and, then, 
the general inclusion-exclusion procedure applies [2]. Now, one can in fact 
obtain those counts in terms of the classical Möbius functions [2]. In 
particular, the number-theoretic Möbius function ( )nμ  is defined as follows: 

0 if is not square-free;
( ) :

( 1) if product of distinct primes.k

n
n

n k
μ

⎧
= ⎨ − =⎩

                (1) 

Using the inclusion-exclusion principle, we state the following: 
 

Proposition 6. Let ,# κ λ′ be the number of cyclic ( , )κ λ -sequences such 
that includes no cyclic sequences of other types. Then, 

                   , ( / ), 1,
| |

# ( / ) # ( / ) #d d d
d d

d dκ λ λκ
λ λ

μ λ μ λ′ = =∑ ∑                  (2) 

Where the d summation is over divisors of .λ  
 

Proof: The first equality in (2) follows from the general inclusion-exclusion 
principle applying the number-theoretic Möbius function ( ),nμ  as this given 
by (1). The second equality follows from the Proposition 5, which completes 
the overall proof. 
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 Preceding experimental observations [3–9] of the last 30 years have 
unequivocally demonstrated the existence of naturally occurring cyclic permutations 
of the amino acid sequence of a protein. Our present Propositions 3 and 4 
determine a sufficient combinatorial condition imposed on respective factors of a 
nucleotide sequence to guarantee the practical occurrence of this phenomenon. 
 Concluding, we also mention that in a wider context, which includes 
also an algebraic simulation of alternative splicing, two other cyclic invariances of 
nucleotide sequences were earlier considered by Propositions 1 and 2 in [10], 
which do not directly take into account the distribution of nucleotides into 
codons. Besides, in nature, there are cases of biologically tolerated shuffling of 
factors of a nucleotide sequence which conserves the inventory of translated 
amino acids, together with all multiplicities thereof [11]. In other words, there 
exist also noncircular permutations of a nucleotide sequence conserving 
the ratios of codonically encoded amino acids (and, maybe, the assortment 
of codons themselves, without equivalent replacements thereof), whereas a 
circular order in which they (would normally) follow may be altered. Here, 
“would” is also used to anticipate a possible perspective of gene engineering 
which might apply such a principle. Presumably, this may give a new impetus to 
further interdisciplinary studies of invariant permutable codes, including 
those which are not cyclically invariant. 
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