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ABSTRACT. We study the amino-acid content of protein sequence factors 
translated from codonic palindromes of nucleotide sequences, which have 
each half comprised from an integer number of codons. Alternatively, our 
study may be viewed to seek consequences if sense & antisense translations 
for proteins originate with the two (complementary) strands of RNA. 

Under either of these presuppositions, we conclude: the total number 
of aspartic-acid, asparagine, tyrosine, and histidine residues produced equals 
the total number of isoleucine, methionine, and valine residues produced. 
Further, we find a suite of inequalities on amino acid counts. Our results provide 
a rigorous consequence to a relation considered by Zull et al. Further, a “parity 
rule” of Chargaff et al. gives some support for a sense/antisense presumption. 
 
Keywords: nucleotide sequence, codonic palindrome, translation, parity rule, 
complementation  

 
 
 
INTRODUCTION  
 Nucleotide sequences of DNA (desoxyribonucleic acid) and RNA 
(ribonucleic acid) are constructed from four types of nucleotides denoted by 
characters A, C, G, and either T (for DNA) or U (for RNA). DNA consists of 
two complementary strands, with these four characters matched into two 
complementary pairs: A & T and C & G.   
 Here, we investigate the consequences of protein translation from both 
sense & antisense directions along nucleotide sequences. This might [1, 2], 
sometimes, arise from oppositely oriented translation along strands from 
complementary DNA strands. Or it can arise from a single RNA strand which 
is a “codonic” palindrome. It is natural to interrelate amino acids as to whether 
they have inverted nucleotide codons, and, indeed, such has already been done 
by Zull & coworkers [3, 4]. From this interrelation (conveniently expressible 
as a “graph”, of vertices representing amino acids, and edges representing the 
relation), consequences then are sought. Zull & Smith [3] questioned whether 
3 portions of this graph correspond to 3 classes of amino acids manifesting 
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different secondary protein structure (α-helix, β-sheet, or random). This could 
only be a statistical correlation, as many amino acids occur in 2 or 3 types of 
secondary protein structures (though with different frequencies), and, indeed, 
Zull & Smith found only a (very) weak correlation. We developed a different 
type of consequence which however is rigorous, under either the condition 
of sense/antisense translation of complementary RNA strands or translation 
from a “codonic” palindrome. We found equal net weights for the frequencies of 
occurrence of amino acids in two subclasses comprising one of the (bipartite) 
fragments of the codon inversion graph. Either Chargaff’s proposal [5] of forward 
(sense) & reverse (antisense) translations nucleic acid sequences or Zull’s 
idea of codonic palindromes leads to a general sense/antisense reading of 
individual codons.  
 Given a nucleotide sequence, a later disjoint sequence is termed an 
inverted repeat if it consists of the complements of the first sequence in reverse 
order. The initial sequence and the later inverse repeat are together termed ([6], 
p. 76) a complementary palindrome – elsewhere often termed simply a 
“palindrome”. Sometimes, the direct sequence and its inverted repeat both 
consist of an integer number of codons. Such a pair of palindromic sequences 
(or subsequences) consisting exactly of an integer number of codons is 
called a codonic palindrome. We represent the situation when there are s 
codons in each of RNA sequence by  
 
 

                       a1a2· · ·a3s-1a3s ·a3s*a3s-1*· · ·a2*a1*,                             (1) 
 
 

where ai & ai* are two complementary nucleotides (say, C & G) of the nucleotide 
alphabet A  = {A, C, G, U}.  Note: the “codonic” condition on this (complementary) 
palindrome means the direct & inverted sequences each comprise an integer 
number of codons. 
 A more general notion allows “concatenation” of different codonic 
fragments of a codonic palindrome. The codons of a codoinic palindrome 
may be moved around to be placed in different positions, still preserving all 
codons, just in a different order.  We term such a reassemblage a codonic 
palindromic conglomerate. 
 This allows consecutive codonic-palindromic loops (such as occur 
with introns), and this also accounts for nested loops (i. e., loops of smaller size 
inserted into contour sequences of loops of larger size), it allows even multiply 
nested loops. We may imagine: at the first hypothetic stage, starting from a 
single giant codonic palindrome, with direct sequence t and inverted repeat 
u, each of which are to be broken up into codon subsequences, say as  
(t1, t2, . . . , tm) and (us, us-1, . . . , u1), with possibly different numbers of different-
lengthed subsequences ti & uj from t & u; and at the second step, putting these 
different subsequences back together in an arbitrary order. The superpalindrome 
need not be biologically realized but rather just the intermixed codonic 
palindromic conglomerates. 
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 Granted these ideas, we develop some formalism in the next section, 
so as to identify notable consequences on the numbers of amino acids 
formed within different selected groups, under the assumption that the RNA 
is a codonic palindromic conglomerate.  Most of the formal discussion is not 
needed to understand the final biological consequences, which come in 
Propositions 4, 5, & 6.   
 
FORMAL RESULTS 

To manipulate nucleotide sequences, one may use three commuting 
operators: α standing for complementation (as indicated by (*) in (1)) of 
nucleotides in a string; β for inversion of the string, and the composition  
γ = αβ = βα. We can formally rewrite (1) using γ: 
 

                         a1a2· · ·a3s-1a3s · γ(a1a2· · ·a3s-1a3s).                              (2) 
 

 Let B  = {b1, b2, . . . , b21} be the set of 21 amino acids (where the 
21st amino acid terminologically corresponds to the triple of stop codons). 
For a nonempty subset S ⊆ B  of amino acids, denote by C(S) the set of all 
codons for the amino acids from S. And let γC(S)  denote the result of action of 
the operator γ on each codon in C(S). 
 We investigate the consequences of a pair of subsets S1 and S2 of 
amino acids, for which γC(S1) = C(S2), or equivalently γC(S2) = C(S1), since 
γ is idempotent (i. e., γ2 = 1), as also are α and β.  
 

Lemma 1. Let T1 & T2 be two sets of amino acids such that C(T1) = γC(T2). 
Let a =a1a2· · ·a3s-1a3s ·a3s*a3s-1*· · ·a2*a1*  (ai, ai* ∈ A ; 1 ≤ i ≤ 3s ≥ 3) be a 
codonic palindrome. Moreover, let lj (res. rj) (j = 1, 2) be the total number of 
occurrences of codons belonging to C(Tj) in  

a1a2· · ·a3s-1a3s (res. a3s*a3s-1*· · ·a2*a1*). Then l1 = r2 & r1 = l2. 
 

Proof. Since a = tγ(t), with t = a1a2· · ·a3s-1a3s & γ(t) = a3s*a3s-1*· · ·a2*a1* , the 
numbers of “direct” and inverted codons in a are equal. Also, by 
construction, C(T1) and C(T2) are sets of mutually inverted codons, whence 
we immediately arrive at the proof. 
 Note: for any codon t representing a respective amino acid bi, the 
corresponding codon u = γ(t) always represents a distinct amino acid bj. 
Therefore, γ induces a binary relation on the set B  of  all amino acids which 
can be represented thereon by a simple graph Γ, where amino acids bi & bj 
are adjacent (linked by an edge) if there exist a codon t of the former and a 
codon u of the latter which are interchanged by γ (u = γ(t) & t = γ(u)). Important 
here are the connected components (maximal connected subgraphs of Γ). 
We immediately use these considerations in the following  
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Lemma 2. Let T1 &T2 be two sets of amino acids with C(T1) = γC(T2). Then, for 
any U1 ⊆  T1 corresponding to a connected component of  Γ, either U1 is entirely 
in T2 or else entirely external to T2 (i. e., either U1 ∩ T2 = U1 or U1 ∩ T2 = ∅). 
 

Proof. Associate to the union Tu = T1 ∪ T2 a graph H whose vertex set is 
Tu, and two vertices i & j are adjacent in H if there exist codons ti & tj such 
that ti = γ(tj). Now, attach exactly one self-loop to every vertex of H to obtain 
a derivative graph Ĥ having the same connectivity components. Clearly, Ĥ 
is an equivalence relation on Tu where any pair of vertices i and j are equivalent 
iff these belong to one connected component. Indeed, three conditions are 
satisfied: (i) reflexivity, as guaranteed by ‘self-connectivity’ of every vertex having 
an attached self-loop; (ii) symmetry, since ti= γ(tj) ⇔ tj  = γ(ti); and (iii) transitivity, 
as follows from the connectivity within a component. Evidently, in our hypothesis, 
U1 is a single equivalence class of vertices of Tu, while T2 is the union of a 
number of equivalence classes of vertices thereof. Since two equivalence 
classes of objects either coincide or share no element, U1 is either included 
as one such class in T2 or intersects with no equivalence class of vertices 
comprising T2. This completes the proof. 
 

Corollary 2.1. Let T1 &T2 be two sets with T1 ≠ T2  and C(T1) = γC(T2). 
Then, if T1 & T2 are minimal, they are disjoint. 
 

Proof. This uses reasoning similar to Lemma 2. Namely, minimal sets T1 
and T2 are both equivalence classes of Tu = T1 ∪ T2. Since T1 ≠ T2, we 
immediately arrive at the proof. 
 

Corollary 2.2. Let a = a1a2· · ·a3s-1a3s ·a3s*a3s-1*· · ·a2*a1* (ai, ai* ∈A ; 1 ≤ i ≤ 3s ≥ 3) 
be a codonic palindrome. Moreover, let nj  ( j = 1, 2) be the total number  
of occurrences of codons belonging to C(Tj) in  a= a1a2· · ·a3s-1a3s (res. 
a*=a3s*a3s-1*· · ·a2*a1*). Then n1 = n2. 
 

Proof. Note that nj = lj + rj  ( j = 1, 2). By virtue of the equalities l1 = r2  and  
r1 = l2 demonstrated in Lemma 1, the proof is immediate. 
 

Proposition 3. In a codonic palindromic conglomerate, there are equal amounts 
n1 and n2  of amino acids from respective minimal subsets T1 and T2, as in 
Corollary 2.1. 
 

Proof. The initial codonic superpalindrome has n1=n2, by Corollary 2.2. But 
breaking up into codons and rearranging all the various codons does not 
change the numbers of the different codons, so that one still has n1 = n2. 
 Next, we frame these results more biologically.  
 

AMINO-ACID COUNTS 
 The relation γ which acts on a nucleic acid string to reverse & complement 
it leads to a relation between amino acids: if an amino acid has codon 
u=a1a2a3, then, it is related or linked to the amino acid with γ(u)=u3*u2*u1*. 
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This overall γ-relation is conveniently represented as a graph Γ where an edge 
occurs between the amino acids of codons u & γ(u). Using the standard codons 
(e. g., as in Ch. 13 of [7]), the graph Γ appears in Fig. 1 – also given by Zull et al. 
[4]. But now (following the results of our preceeding section) we seek a minimal 
pair of subsets S1 & S2 of amino acids for which γC(S1) = C(S2), and γC(S2) = 
C(S1), since γ2 = 1. It turns out that in Γ there is a pair of such sets: S1 = {D, N, T, 
H} & S2 = {I, M, V}, where D, N, T, H, I, M, V denote aspartic acid, asparagine, 
tyrosine, histidine, isoleucine, methionine, and valine, consecutively. One sees 
that our sets S1 & S2 are mutually interconnected while being completely 
disconnected from the remaining vertices. The corresponding codon sets are 
C(S1) = {GAU, GAC; AAU, AAC; UAU, UAC; CAU, CAC} and C(S2) = {AUU, 
AUC, AUA; AUG; GUU, GUC, GUA, GUG}. Application of the operator γ to 
C(S1) gives γC(S1) = {AUC, GUC, AUU, GUU, AUA, GUA, AUG, GUG}, which 
is just C(S2). Hence, also γC(S2) = C(S1). This is the only pair of minimal 
distinct sets S1 & S2 of amino acids having the described property in Γ (to 
transform quantitatively into each other under the operator γ). The remnant 
set S3  = B \ S1 ∪ S2  of amino acids gives a minimal set C(S3) of codons closed 
under the action of γ. 
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Figure 1: The graph Γ of γ-relations of amino acids; the left bipartite component 
displays the sets S1 (the 4-site part: Hys, Tyr, Asn, Asp) and S2 (the 3-site part: 

Met, Val, Ile), while the right component displays the set S3 . 
 

A codonic palindromic conglomerate merely conditions codons to 
occur in complementary pairs. Thence, allowing several codonic palindromes 
nested, or multiply nested, or interlinked in all kinds of ways. Instances of such 
objects can occur in introns. Recall that the mRNA of eukaryotes is obtained 
through splicing from pre-mRNA (precursor mRNA), which is similar to a portion 
of a strand of DNA. During splicing, relatively long factors called introns are 
removed from a pre-mRNA sequence. Most introns are 80 to 400 base pairs in 
size; though there also exist huge introns of length >10,000. While introns do not 
themselves participate in producing amino acids, it is of note that the intronic 
loops even of a very high degree are covered in the conditions of Proposition 3, 
where n1 = n2 is achieved. More explicitly for (T1 &T2  of Proposition 3 realized as) 
S1 & S2  in Fig. 1, with #X being the number of amino acid moieties X produced, 
we arrive at a primary biological result: 
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Proposition 4. In protein factors translated from codonic palindromic 
conglomerates, such as occur with various stem loops, numbers of amino-
acid residues are related 

#Asp + #Asn + #Tyr + #His = #Ile + #Met + #Val. 
 But, granted our codonic palindromic conglomerates, there are further 
(weaker) consequences, concerning inequalities on amino acid numbers. In 
particular, we have: 
 

Proposition 5. In protein factors translated from codonic palindromic 
conglomerates, there are inequalities on the numbers of different amino acids: 
 

                                             #Met ≤ #His; 
                                             #His ≤ #Met + #Val; 
                                              #Ile ≤ #Tyr + #Asn + #Asp; 
                         #Tyr + #Asn + #Asp ≤ #Ile + #Val; 
                                             #Gln ≤ #Leu; 
                                             #Trp ≤ #Pro; 
                                             #Ter ≤ #Leu + #Ser; 
                                             #Pro ≤ #Trp + #Arg + #Gly; 
                                             #Ser ≤ #Ter + #Arg + #Gly + #Ala + #Thr 
                                            #Cys ≤ #Ala + #Thr; 
                                    #Ala + #Thr ≤ #S er + #Arg + #Gly + #Cys; 
                                  #Leu + #Phe ≤ #Gln + #Lys + #Glu + #Ter; 
                         #Gln + #Lys + #Glu ≤ #Phe + #Leu; 
                #Gln + #Lys + #Ter + #Glu ≤ #Leu + #Phe + #Ser; 
                #Trp + #Arg + #Gly + #Cys ≤ #Pro + #S er + #Ala + #Thr; 
                #Pro + #Ser + #Cys ≤ #Trp + #Ter + #Arg +  #Gln + #Ala + #Thr; 
 

where the number #Ter of “stops” is conveniently identified to the number 
of different proteins. 
 

Proof. Our proof begins with a transformation of G of Fig. 1 into a symmetric 
digraph Γ where each edge of G is converted into a pair of opposite directed 
arcs between the same two vertices (as originally connected by the replaced 
edge). We attach to every arc i j of Γ a weight aij equal to the total multiplicity of 
all codons representing amino acid i which are transformed by the operator γ 
into codons of amino acid j. Next, we use a (common mathematical) definition 
that a subset I of vertices of G is independent if no two vertices of I are 
adjacent in G. Any independent subset I of amino acids (nontransformable one 
into another by γ) determines the set J = N(I) of all amino acids adjacent to 
members of I. Evidently, the operator γ transforms all codons of amino acids from 
I into codons representing amino acids from J, but the converse is true if no two 
amino acids of J are adjacent in Γ (or Fig. 1). In general, there holds a (nonstrict) 
inequality interrelating the total numbers of codons of I transformed into 
codons of J and of codons of J itself, taking into account other possible 
transformations of codons of N(I) – not into codons of I. Thus, we deduce 
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for the total numbers of codons in I and J that |C(I)| ≤ |C(J)|. Hence, particular 
proofs for all cases considered in Proposition 3 follow, with different choices 
of independent I & neighbors J = N(I) corresponding to the left & right sets 
of amino acids in each of these inequalities. 
 Presumably, these statements are most important when at least most of 
the RNA (or DNA) is comprised from codonic palindromic conglomerations. 
But, perhaps, most significantly Propositions 4 and 5 hold under the sense/ 
antisense circumstance proposal in [1] & [2], [5] and explored in [3] & [4]. That is: 
 

Proposition 6. If in place of the condition of codonic palindromic conglomerates 
in Propositions 4 & 5, the protein factors are translated from RNA, obtained from 
both (sense & antisense) DNA strands, then the conclusions 4 & 5 still hold. 
 

Proof. The two corresponding RNA strands may be viewed as a single codonic 
palindrome, say each of the strands being separated from one another by a 
hypothetical “stop” codon. Thence, Propositions 4 & 5 apply. 
 
DISCUSSION 
 Comparison of proportions of amino acids as indicated by Propositions 
4 & 5 are perhaps of practical interest. Clearly, 4 & 5 are most relevant 
when all or at least a major part of the RNA (or DNA) is comprised from codonic 
palindromes – in as much as the various indicated amino acids may be coded 
for in different amounts by the portion of the nucleotide chain outside the 
codonic palindromes. Chargaff & coworkers’ “parity rule” [5, 8–10] is in 
general a little weaker than the hypothesis of 4 & 5, but still is supportive of 
it, for some selected species. Most significantly, our results on amino-acid 
counts apply fully if the sense/antisense hypothesis of [1, 2] is met. As such, our 
Proposition 6 offers a strong test of the occurrence of sense/antisense 
translations – such as we imagine though not a general occurrence, could 
be the situation for selected species. 
 Further, note that a “parity rule” of Chargaff and coworkers [5] suggests 
that, in a wide class of single strands of DNA, the numbers of A&T nucleotides 
match as also do the numbers of C&G nucleotides. (This seems to occur [8] 
especially for eubacterial and chloroplast DNA.) That is, granted the satisfaction 
of this Chargaff’s rule, single DNA strands have met (in our formal nomenclature) 
a first condition for the whole DNA molecule to be a codonic palindromic 
conglomerate. A strengthening of this rule to say that complementary nucleotides 
fully “condense” into complementary  
codons would then imply our result for a single strand of DNA. 
 Again, our ideas are related to Zull and coworkers [3, 4], though 
they look at the possibility of the graphic structure of Fig. 1 to be statistically 
manifested in secondary protein structures, whereas what we focus on is 
what might be termed “0-ary” structure (of amino acid counts). A further 
point is that our results (of Propositions 4, 5, 6) are robust to certain rare 
complications involving the rare alternative translation of a “stop” to some 
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other rare amino acid – and this may be seen not to hurt any of the inequalities 
in 5. For instance, the “stop” codon UGA can in certain mitochondria code 
for tryptophan and for selenocystein in certain Archaea. Also, this occurs 
because [12] the second stop codon UAG can code for pyrrolysine in 
Archaea and bacteria. 

Besides, the (standard) mode of forming RNA loops, another hypothetic 
possibility might be imagined to form “reverse loops” (i. e., helixlike loops) 
interconnecting between a directed sequence and a second sequence of 
nucleotides which, though complemented from the first sequence, is not 
reversed in direction along the strand. If such is imagined: namely, to occur 
(as has indeed been entertained as a possibility by Chargaff et al. [10]), one 
could then inquire about the numbers of different amino acids which arise from 
two so-related sequences. That is, one would inquire about the interrelated 
amino acids, considering our complementation operator α as interrelating the 
two nucleotide sequences – conglomerated or not. Then, the same sort of 
results found in our formal section apply, with γ replaced by α, now with 
reference to the α-graph of Fig. 2. 
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Figure 2: The graph of α-relations of amino acids. 

 
 With many bipartite components in this graph, this would evidently 
lead to a multiplicity of interrelations amongst numbers of various amino 
acids. For instance, this would imply that the amounts of glycine & and 
proline are the same (and also the amounts of lysine & phenylalanine) – 
seemingly, these equalities (and more) do not occur, so that the pairing 
between a direct sequence and a second sequence in a strand in the same 
direction, evidently, does not occur. The apparent reason must be that, e. g., 
the pairing between C & G occurs only when the two nucleotides in making 
contact are oppositely oriented along a nucleotide chain, whence we might 

in fact distinguish the possibilities by 
→
C&

→
G  for nucleotides oriented in one 

“symparallel” direction along the chain, and 
←
C&

←
G in the other direction 

along the chain – so that pairing occurs between antiparallel [10] 
→
C&

←
G  (or 
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between 
→
G &

←
C ), but not between “symparallel” 

→
C&

→
G   (or 

←
C&

←
G ). A 

similar comment applies for A & U (or T). That is, the conformational structure 
of each nucleotide is evidently different along the two different directions of 
a chain. Overall this evidently accounts for the fact that nucleotide sequences 
always form copies in antiparallel directions, rather than symparallel directions 
(with complementation). This, seemingly, is an evolutionarily selected (or) 
condition for faithful transcription. 
 
CONCLUSION 
 Beyond the presumption of sense/antisense reading of codons, our 
exposition here arises from just very basic facts of molecular genetics. Under 
such (sense/antisense) conditions, we have found novel biological consequences 
enounced in Propositions 4, 5, and 6. Being rigorous consequences of these 
conditions, the amino-acid count relations may be used as tests for either 
Chargaff’s sense/antisense hypothesis (in RNA) or for our codonic palindromic 
conglomerate condition (whence, then, Zull’s hypothesis). That is, if our amino-
acid conditions are not met, then this denies both Chargaff’s and Zull’s 
hypotheses. Finally, we may mention two other recent works [13, 14] which 
consider similar biological matters in a wider algebraic context. 
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