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ABSTRACT. A map taking graphs as arguments is called a graph invariant 
or topological index if it assigns equal values to isomorphic graphs. A dendrimer 
is an artificially manufactured or synthesized molecule built up from branched 
units called monomers. In this paper, the Wiener index of the micelle-like chiral 
dendrimers is computed. 
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INTRODUCTION  

The basic assumption for all molecules based hypothesis is that 
similar molecules have similar activities. This principle is also called Structure-
Activity Relationship (SAR). Quantitative Structure Activity Relationship, 
QSAR, is the process by which a chemical structure is quantitatively correlated 
with a well defined process, such as biological activity or chemical reactivity. 

In mathematical chemistry, molecules are often modeled by graphs 
named “molecular graphs”. A molecular graph is a simple graph in which 
vertices are the atoms and edge are bonds between them. A topological 
index for a molecular graph G is a numerical value for correlation of chemical 
structure with various physical properties, chemical reactivity or biological 
activity [1]. The Wiener index [2] is the first topological index introduced by 
Harold Wiener. This index is defined as the sum of all topological distances 
between the pair vertices. In an exact phrase, if G is a graph and d(x,y) 
denotes the length of a minimal path connecting vertices x and y of G then 
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yxdGW will be the Wiener index of G. 

Nano-biotechnology is a rapidly advancing area of scientific and 
technological opportunity that applies the tools and processes of nanofabrication 
to build devices for studying biosystems. Dendrimers are among the main objects 
of this new area of science. Here a dendrimer is a synthetic 3-dimensional 
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macromolecule, prepared in a step-wise fashion from simple branched monomer 
units, the nature and functionality of which can be easily controlled and varied. 
The aim of this article is a mathematical study of this class of nano-materials. 
Cyclopropane and its derivatives are among the most intensely structurally 
studied molecules. Triangulanes are hydrocarbons consisting of spirofused 
cyclopropane rings. They are one of the most exotic groups of cyclopropane 
derivatives. Many of them show fascinating chemical, physical and sometimes 
biological properties [3]. 

Diudea and his co-workers [4-12] was the first scientist which considered 
the topological properties of nanostructures. After leading works of Diudea, 
some researchers from China, Croatia, Germany, India, Iran, Italy and UK 
continued these programs to compute distance-based topological indices of 
nanostructures [13-24].  
 
 
MAIN RESULTS AND DISCUSSION 

Consider the molecular graph of micelle-like chiral dendrimer G[2] 
depicted in Figure 1(c). We extend this molecular graph to the case that 
there exists a maximal chain of length n from the core to the end hexagon 
and denote its molecular graph by G[n]. The aim of this section is to 
compute the Wiener index of this class of dendrimers. 

 

 
 

(a) (b) 

 

 

(c) (d) 
Figure 1. a) The Core of Micelle-Like Chiral Dendrimer G[n]; b) The Molecular 

Graph of G[0]; c) The Molecular Graph of G[2]; d) A Branch of G[2]. 
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Let G be a simple molecular graph without directed and multiple 
edges and without loops, the vertex and edge-sets of which are represented 
by V(G) and E(G), respectively. A path of length n in G is a sequence of n + 1 
vertices such that from each of its vertices there is an edge to the next 
vertex in the sequence. For two vertices x and y of G, d(x,y) denotes the 
length of a minimal path connecting x and y. A graph G is called connected, 
if there is a path connecting vertices x and y of G, for every x, y ∈ V(G).  

Suppose X is a set, Xi, 1 ≤ i ≤ m, are subsets of X and F = {Xi}1≤i≤m is 
a family of subsets of X. If Xi’s are non-empty, m

i 1 iX X== U  and i jX X∩ =∅ , 

i ≠ j, then F is called a partition of X. If G is not connected then G can be 
partitioned into some connected subgraphs, which is called component of 
G. Here a subgraph H of a graph G is a graph such that V(H) ⊆ V(G) and 
E(H) ⊆ E(G). A subgraph H of G is called convex if x, y ∈ V(H) and P(x,y) is 
a shortest path connecting x and y in G then P is a subgraph of H.  

Let’s start by computing the number of vertices and edges of G[n]. 
From Figure 1(c), one can easily seen that this graph can be partitioned 
into four similar branches Figure 1(d) and a core depicted in Figure 1(a). 
Suppose an and bn denote the number of edges and vertices in each branch of 
G[n], respectively. Then an = 9 × 2n+1 – 8 and bn = 2n+4 − 6. By Figure 1, one 
can see that |V(G[n])| = 4bn + 34 = 2n+6 + 10 and |E(G[n])| = 9 × 2n+3 + 9.  

A graph G is called to satisfy the condition (*) if G is connected and 
there exists a partition {Fi}1≤i≤k for E(G) such that for each i, G – Fi has 
exactly two components, say Gi,1 and Gi,2,  where they are convex subgraphs 
of G. The following theorem25 is crucial in our calculations. 

 

Theorem 1. If G satisfy the condition (*) then .|)(||)(| W(G) 2,1 1, i
k
i i GVGV∑ ×= =     

 We are now ready to prove our main result. To do this, we first define 
the notion of parallelism in a graph. The edge e1 = xy  said to be parallel with 
edge e2 = ab, write e1 || e2, if and only if D(x,ab) = D(y,ab), where D(x,ab) = 
min{d(x,a),d(x,b)} and D(y,ab) is defined similarly. In general this relation is 
not an equivalence relation; even it is not symmetric or transitive. But it is 
an equivalence relation in the edges of graph G[n] (by a few mathematical 
background one can see that this equivalence relation defines a partition on 
E(G[n]) each part being an equivalence class). The equivalence class of G[n] 
containing the edge e is denoted by [e]. So G[n] satisfies condition (*). 
 
Theorem 2. The Wiener index of G[n] is computed as follows: 
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Proof. Consider the parallelism relation “||” on the edges of G[n]. Since “||” 
is an equivalence relation on E(G), E(G) can be partitioned into equivalence 
classes. From Figure 1(c), there are two equivalence classes of size 3 and 
other classes have sizes 1 or 2. It is also clear that for each edge e ∈ E(G[n]), 
G[n] – [e] has exactly two components where each of them is convex, thus 
we can use the Theorem 1. The hexagons nearest to the endpoints of G[n] 
are called the end hexagons of G[n].  

Consider the subgraph A of G[n] depicted in Figure 2(a) is not an 
end hexagon. It is easy to see that F1 = {e7}, F2 = {e1,e4}, F3 = {e3,e6} and F4 = 
{e2,e5} are the equivalence classes of A. The components of G[n] – F1 have 

rb  and r
c
r bnGVb −= |])[(|  vertices; the components of G[n] – F4 have 

3−rb and c
rb )3( −  vertices and the components of G[n] – F2, G[n] – F3 

have exactly 31 −−rb and c
rb )3( 1 −−  vertices, where 1 ≤ r ≤ n. One can see 

that for an arbitrary r, the number of hexagons in the (n – r)-th generation of 
G[n] is 4 × 2n-r. 

Next we consider an end hexagon, the subgraph B depicted in Figure 2(b). 
Then H1 = {e11}, H2 = {e7 }, H3 = {e9 }, H4 = {e8 }, H5 = {e10}, H6 = {e2,e6}, H7 = {e1,e5} 
and H8 = {e3,e4} are the equivalence classes of B. On the other hand, one 
of the component G[n] – H1, G[n] – H2, …, G[n] – H8 have exactly 10, 2, 1, 2, 1, 
5, 5 and 7 vertices, respectively. Also, one can see the number of end hexagons 
is 4 × 2n.  

 The Subgraph A 

 

(b) The Subgraph B 

 
(c) The Core of G[n] 

 
Figure 2. Fragments of the dendrimer G[n] 

 
Finally, we consider the core of G[n], Figure 2(c). The equivalence 

classes of the core are X1 = {1,2,3}, X2 = {4,5}, X3 = {6,7}, X4 = {8,9}, X5 = {10,11}, 
X6 = {13}, X7 = {14}, X8 = {15}, X9 = {16}, X10 = {17}, X11 = {18}, X12 = {19} and 
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X13 = {12}. Again G[n] – Xi, 1 ≤ i ≤ 13, are two component graphs, say Hi,1 
and Hi,2. Define a* = a × ac , a is integer, and .131|,(||)(| 21,

* ≤≤×= iXVXVX )i,ii  
Then we have the following equalities: 

)*,52(*
1 += nbX  )*,3(*

3
*
2 +== nbXX  )*,72(*

4 += nbX )*,10(*
5 += nbX  

,
4

|])[(| 2
*
13

nGVX = .126)*,13(* ≤≤−= iiX i  

Now, applying Theorem 1, we have:  
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The proof is now complete by substituting the variables with those 

given above.           
 

CONCLUSIONS 
In this paper a simple method enabling to compute the Wiener index 

of dendrimers was presented. We apply this method on the molecular 
graph of a micelle-like chiral dendrimer to obtain an exact formula for the 
Wiener index of this class of dendrimers. Our method is efficient and can 
be applied on other classes of dendrimers. 
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