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ABSTRACT. The Geometric-Arithmetic (GA) index is a recently proposed 
topological index in mathematical chemistry. In this paper, a group theoretical 
method for computing the GA index of graphs is presented. We apply this 
method to some classes of dendrimers to calculate their GA index. 
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INTRODUCTION 

A molecular graph is a simple graph such that its vertices correspond 
to the atoms and the edges to the bonds. Note that hydrogen atoms are 
often omitted. By IUPAC terminology, a topological index is a numerical value 
associated with a chemical constitution purporting for correlation of chemical 
structure with various physical properties, chemical reactivity or biological 
activity [1−3]. The name “topological index” was first used by Hosoya [4], in 
connection with his Z index, which he used for characterizing the topological 
nature of  graphs. 

A dendrimer is generally described as a macromolecule, which is 
built up from a starting atom, such as nitrogen, to which carbon and other 
elements are added by a repeating series of chemical reactions that produce 
a spherical branching structure. In a divergent synthesis of a dendrimer, 
one starts from the core (a multi connected atom or group of atoms) and 
growths out to the periphery. In each repeated step, a number of monomers 
are added to the actual structure, in a radial manner, resulting in quasi 
concentric shells, called generations. In a convergent synthesis, the periphery 
is first built up and next the branches (called dendrons) are connected to the 
core. The stepwise growth of a dendrimer follows a mathematical progression 
and its size is in the nanometer scale [5−7].  

We now recall some algebraic notations that will be used throughout. 
Suppose G is a graph with vertex and edge sets V(G) and E(G), respectively. If e 
is an edge of G, connecting the vertices u and v then we write e = uv. For each 
vertex a and b, d(a,b) denotes the length of a minimal path connecting them. 
The eccentricity of a vertex x, ε(x), is defined as the maximum of {d(y,x) | y ∈ V(G)}.  
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Following Vukičević and Furtula [8], the GA index of a molecular graph G 

is defined as ∑ ∈ +
= )(

2
GEuv deg(v)deg(u)

v)deg(u)deg(
 GA(G) , where deg(u) denotes the 

degree of vertex u in G and the sum is taken over all edges e = uv of G. We 
encourage the interested readers to consult the papers [9−16] for other 
variants of this new topological index and their mathematical properties, as 
well as the reviews [17,18].  

In the present article, we continue our works on computing the 
topological indices of dendrimers [19−21]. Our notation is standard and 
mainly taken from the standard books of graph theory.  

 
RESULTS AND DISCUSSION 

The GA index of a molecular graph G is based on ratio of the 
geometric and arithmetic mean and can be computed by considering the 
automorphism group of G. One method to calculate this topological index 
efficiently is to use group theory and in particular the automorphism group 
of the graph [23−26]. An automorphism of a graph G is an isomorphism of 
G with itself and the set of all such mappings is denoted by Aut(G). 

 

 

Abstract 

 

Figure 1. The All-Aromatic Dendrimer DNS1[1] and DNS1[3], respectively. 
 

 

 

 

Figure 2. The Wang's Helicene-Based Dendrimers DNS2[2] and DNS2[3], respectively. 
 
In mathematics, groups are often used to describe symmetries of 

objects. This is formalized by the notion of a group action: every element of 
the group "acts" like a bijective map (or "symmetry") on some set. To clarify 
this notion, we assume that Γ is a group and X is a set. Γ is said to act on X 
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when there is a map φ : Γ � X →X such that all elements x ∈ X, (i) φ(e,x) = x 
where e is the identity element of Γ, and (ii) φ(g, φ(h,x)) = φ(gh,x) for all g,h ∈ Γ. 
In this case, Γ is called a transformation group; X is called a Γ -set, and φ is 
called the group action. For simplicity we define gx = φ(g,x).  

In a group action, a group permutes the elements of X. The identity 
does nothing, while a composition of actions corresponds to the action of the 
composition. For a given X, the set {gx | g ∈ Γ }, where the group action moves 
x, is called the group orbit of x. The subgroup which fixes is the isotropy 
group of x.  

Let H and K be two groups and K acts on a set X. The wreath 
product H~K of these groups is defined as the set of all order pair (f ; k), 
where k ∈ K and HXf →:  is a function such that (f1 ; k1).(f2 ; k2) = (g ; k1k2) 

and ( ) ( ) ( )2k
21 ifif = ig . 

In the following simple lemma a formula for computing the GA index 
of a graph based on the action of Aut(G) on E(G) is obtained. 

 

            
Figure 3. Some Elements of Ei,1 , Ei,2 , Ei,3 , Ei,4  and  . 

 
Lemma. Consider the natural action of Aut(G) on the set of edges 

containing orbits 1E , 2E , … , kE . Then 
)deg(v)deg(u

))deg(vdeg(u
E GA(G)

ii

ii
k

i
i +

=∑
=

2
||

1
, 

where iivu is an edge of the i−th orbit. In particular, if the action is transitive 

and e=uv is an edge of G then 
deg(v)deg(u)

v)deg(u)deg(
GE GA(G)

+
=

2
|)(| . 

Proof. By definition, for each edge e1=uv and e2=xy in the same 
orbit O, there exists an automorphism f such that (f(u)=x & f(v)=y) or (f(u)=y & 

f(v)=x). Thus .
22

deg(y)deg(x)

y)deg(x)deg(

deg(v)deg(u)

v)deg(u)deg(

+
=

+
 Since E(G) is partitioned by 

orbits, .
2

||
2

11 )deg(v)deg(u

))deg(vdeg(u
E

deg(v)deg(u)

v)deg(u)deg(
 GA(G)
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ii
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==

∈  This 

completes the proof.   
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We are now ready to calculate the GA index of dendrimers depicted 
in Figures 1 to 3. We have: 

 
Theorem. The GA indices of dendrimers depicted in Figures 1 and 

2 are as follows: 

1. ,35/6)12(2429])[( 1 −−+×= nnnDNSGA  

2. )325/62419)(12()325/61622(2])[( 11
2 ++−−++= −− nnnDNSGA

                           ).13( −+  
Proof. To compute the GA indices of these dendrimers, we first 

compute the number of their vertices and edges as follows: 
 

|V(DNS1[n])| = 18 × 2n+1 – 12; |V(DNS2[n])| = 27×2n+1 – 1 
|E(DNS1[n])| = 21 × 2n+1 – 15; |E(DNS2[n])| = 33(2n+1 – 1) 

 

Next we compute the automorphism group of DNS1[n]. To do this, 
we assume that T[n] is a graph obtained from DNS1[n] by contracting each 
hexagon to a vertex. The adjacencies of these vertices are same as the 
adjacencies of hexagons in DNS1[n]. Choose the vertex x0 of T[n], associated 
to the central hexagon, as root. Label vertices of T[n] adjacent to x0 by 1, 2 and 
3; the vertices with distance 2 from x0 by 4, 5, 6, 7, 8, 9; the vertices with 
distance 3 from x0 by 10, 11, 12, …, 21; … and vertices with distance n 
from x0 by 3 × (2n−1) + 1, …, 3 × (2n+1−1). Set X = {1, 2,…, 3×(2n+1−1)}. Then 
S3 acts on X = {1, 2, …, 3×(2n−1)} and the automorphism group of DNS1[n] is 
isomorphic to Z2 ~ S3, obtained from above action, see Figure 3. Suppose 
Aut(DNS1[n]) acts on E(DNS1[n]) and E0,0, E1,1 , E1,2 , E1,3 , E1,4 , …, En,1 , 
En,2 , En,3 , En,4 are orbits of this action. We also assume that H is the central 
hexagon and E0,0 is the set of all edges of H. To obtain the edges Ei,1, Ei,2, 
Ei,3, Ei,4 we use the following algorithm: 

1. Ei,1 is the set of all edges e = uv such that d(u,H) = 3i – 3, d(v,H) = 
3i – 2 and deg(u) = deg(v) = 3, where for each subset Y ⊆ V(DNS1[n]), 
d(u,Y) = Min{d(u,b) | b ∈ Y}. 
2. Ei,2 is the set of all edges e = uv such that d(u,H) = 3i – 2 and 
d(v,H) = 3i – 1. 
3. Ei,3 is the set of all edges e = uv such that d(u,H) = 3i – 1 and 
d(v,H) = 3i. 
4. Ei,4 is the set of all edges e = uv such that d(u,H) = 3i, d(v,H) = 3i + 1, 
deg(u) = 3 and deg(v) = 2. 
Obviously, for DNS1[n] if e = uv ∈ Ei,j then  





=
=

=
+ 4,3,25/62

112

i

i

deg(v)deg(u)

v)deg(u)deg(
. Moreover, |Ei,1| = 3 × 2i-1 

and |Ei,2| = |Ei,3| = |Ei,4| = 6 × 2i-1. This completes the proof of (1). To 
prove 2, it is enough to consider the action of the group Aut(DNS2[n]) 
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on E(DNS2[n]) and use a similar method as given the case 1. Notice 
that in this case the automorphism group Aut(DNS2[n]) is isomorphic 
to the wreath product Z2 ~ Z2, where Z2 acts on the set Z = {1, 2, …, 
2n−1}. 
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