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ABSTRACT. Let m(G,c) be the number of strips of length c. The omega 
polynomial was defined by M. V. Diudea as c

c
(G, x) m xΩ = ⋅∑ . One can 

obtain the Sadhana polynomial by replacing xc with x|E|-c in omega 
polynomial. Then the Sadhana index will be the first derivative of Sd(G,x) 
evaluated at x = 1. In this paper, the Omega and Sadhana polynomials of a 
new infinite class of fullerenes is computed for the first time. 
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INTRODUCTION 
The discovery of C60 bucky-ball, which is a nanometer-scale hollow 

spherical structure, in 1985 by Kroto and Smalley, revealed a new allotrope 
of carbon element other than graphite, diamond and amorphous carbon [1,2]. 
Fullerenes are molecules in the form of cage-like polyhedra, consisting solely 
of carbon atoms and having pentagonal and hexagonal faces. In this paper, 
the [4,6] fullerenes 28n

C  with tetragonal and hexagonal faces are considered. 

Let p, h, n and m be the number of tetragons, hexagons, carbon atoms and 
bonds between them, in a given fullerene F. Since each atom lies in exactly 
3 faces and each edge lies in 2 faces, the number of atoms is n = (4p+6h)/3, 
the number of edges is m = (4p+6h)/2 = 3/2n and the number of faces is  
f = p + h. By the Euler’s formula n − m + f = 2, one can deduce that 
(4p+6h)/3 – (4p+6h)/2 + p + h = 2, and therefore p = 6. This implies that 
such molecules, made entirely of n carbon atoms, have 6 tetragonal and 
(n/2 − 4) hexagonal faces. 

Let G = (V, E) be a connected bipartite graph with the vertex set V = V(G) 
and the edge set E = E(G), without loops and multiple edges. The distance 
d(x,y) between x and y is defined as the length of a minimum path between 
x and y. Two edges e = ab and f = xy of G are called codistant, “e co f”, if 
and only if d(a,x) = d(b,y) = k and d(a,y) = d(b,x) = k+1 or vice versa, for a 
non-negative integer k. It is easy to see that the relation “co” is reflexive and 
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symmetric but it is not necessary to be transitive. Set C(e)= { f E(G) | f co e }∈ . 
If the relation “co” is transitive on C(e) then C(e) is called an orthogonal cut 
“oc” of the graph G. The graph G is called a co-graph if and only if the edge 
set E(G) is a union of disjoint orthogonal cuts. If any two consecutive edges 
of an edge-cut sequence are topologically parallel within the same face of 
the covering, such a sequence is called a quasi-orthogonal cut qoc strip. Three 
counting polynomials have been defined on the ground of qoc strips [3-7]: 

Ω = ⋅∑ c
c(G,x) m x                (1) 

Θ = ⋅ ⋅∑ c
c(G,x) m c x           (2) 

−Π = ⋅ ⋅∑ e c
c(G,x) m c x               (3) 

(G,x)Ω  and (G,x)Θ polynomials count equidistant edges in G while 
(G, x)Π , non-equidistant edges. In a counting polynomial, the first derivative 

(in x=1) defines the type of property which is counted; for the three polynomials 
they are: 

1′Ω = ⋅ = =∑c(G, ) m c e E(G)                   (4) 
21′Θ = ⋅∑c(G, ) m c            (5) 

c(G,1) m c (e c)′Π = ⋅ ⋅ −∑                  (6) 
The Sadhana index Sd(G) for counting qoc strips in G was defined 

by Khadikar et al.[8,9] as cSd(G) m(G,c)(|E(G)| c)= −∑ . We now define the 
Sadhana polynomial of a graph G as |E| c

cSd(G,x) mx .−= ∑  By definition of 
Omega polynomial, one can obtain the Sadhana polynomial by replacing xc 
with x|E|-c in Omega polynomial. Then the Sadhana index will be the first 
derivative of Sd(G, x) evaluated at x = 1. 

A topological index of a graph G is a numeric quantity related to G. 
The oldest topological index is the Wiener index, introduced by Harold Wiener. 
Padmakar Khadikar [10,11] defined the Padmakar–Ivan (PI) index as 

e uv E(G) u vPI(G) [m (e|G)  m (e|G)]= ∈= +∑ , where mu(e|G) is the number of edges 
of G lying closer to u than to v and mv(e|G) is the number of edges of G 
lying closer to v than to u. Edges equidistant from both ends of the edge uv 
are not counted.  

Ashrafi [12,13] introduced a vertex version of PI index, named the 
vertex PI index and abbreviated by PIv. This new index is defined as 

e uv E(G)v u vPI (G) [n (e|G)  n (e|G)]= ∈= +∑ , where nu(e|G) is the number of vertices 
of G lying closer to u and nv(e|G) is the number of vertices of G lying closer 
to v. If G is bipartite then nu(e|G) + nv(e|G) = n and so, PIv(G) = n |E(G)|. 
Throughout this paper, our notation is standard and taken from the standard 
book of graph theory [14]. We encourage the reader to consult papers by 
Ashrafi et al and Ghorbani et al [15-23].  
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RESULTS AND DISCUSSION 
The aim of this paper is to compute the counting polynomials of 

equidistant (Omega, Sadhana and Theta polynomials) of 28n
C  fullerenes with 

8n2 carbon atoms and 12n2 bonds (the graph G, Figure 1, is n=2).  
 

 
Figure 1. The Fullerene Graph C30. 

 
Figure 2. The Carbon Nanocone CNC4[1] 

with 16 vertices. 
 
Example 1. Suppose C30 denotes the fullerene graph on 30 vertices, 

see Figure 1. Then PIv(C30) = 1090 and Ω(C30,x) = x5 + 10x2 + 20x.  
 

Example 2. Consider the carbon nanocones G = CNC4[1] with 16 
vertices, Figure 2. Then PIv(G) = 320 and Ω(G,x) = 2x4 + 4x3.  

 

Example 3. Suppose H is the graph of carbon nanocones CNC4[2] 
with 36 vertices, see Figure 3. Then PIv(H) = 1728 and Ω(H,x) = 2x6 + 4x5 + 4x4. 

 
Figure 3. The Carbon Nanocone 

CNC4[2] with 36 vertices. 
Figure 4. C32 obtained from two copies 

of CNC4[1]. 
 
Example 4. Consider the fullerene 32C , Figure 2. One can see that 

v 32PI (C )=1536  and 8 6
32(C ,x) = 3x  + 4x . Ω  

Lemma. Consider the fullerene graph 28n
C . Then PIv( 28n

C )= 96n4.  
Proof. Because the graph is bipartite, by above discussion we have: 
PIv(G)= |E(G)||V(G) = 96n4. 
Consider the fullerene graph 28n

C  (Figure 4). Its symmetry group is 
isomorphic to a non-Abelian group of order 96. The orders of elements of 
its symmetry group are 1, 2, 3, 4 and 6. The center of its symmetry group is 
isomorphic with the group C2. In the Appendix one can see how its symmetry 
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group can be computed by GAP31 software. We can draw the graph of 28n
C  

by joining corresponding vertices of two copies of CNC4[n-1]. For example 
C32 is obtained from two copies of CNC4[1] as follows: 

 

Theorem. 4 33 4 1n n
28n

(C ,x) x (n )x .Ω = + −  
Proof. By Figure 5, there are two distinct cases of qoc strips. We 

denote the corresponding edges by e1, e2, …, e10. By using Table 1 and 
Figure 5 the proof is completed. 

 
Table 1. The number of co-distant edges of ei, 1 ≤ i ≤ 5. 

 

No. Number of co-distant edges Type of Edges 
3 4n e1 
4(n-1) 3n e2 

 

Corollary. 
2 212 4 12 33 4 1n n n n

28n
Sd(C ,x) x (n )x .− −= + −  

e1

e2

 
Figure 5.The graph of fullerene 28n

C  for n=2. 

 
CONCLUSIONS 

Fullerenes are molecules in the form of cage-like polyhedra, consisting 
solely of carbon atoms. In this paper, by constructing an infinite family of [4,6] 
fullerenes, we computed Omega and Sadhana polynomials of them for the 
first time. 

 
Appendix(Symmetry Group of C32 Fullerene by GAP Software [31] 
a:=(1,2)*(3,4)*(5,6)*(7,8)*(9,10)*(11,12)*(13,14)*(15,16)*(17,18)*(19,20)*(2

1,22)*(23,24)*(25,26)*(27,28)*(29,30)*(31,32); 
b:=(1,3)*(2,4)*(5,7)*(6,8)*(9,11)*(10,12)*(13,15)*(14,16)*(17,19)*(18,20)*(2

1,23)*(22,24)*(25,27)*(26,28)*(29,31)*(30,32); 
c:=(1,4)*(6,7)*(11,24)*(12,22)*(16,30)*(15,32)*(26,27)*(10,21)*(9,23)*(14,2

9)*(31,13)*(18,19); 
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d:=(1,2,3,4)*(7,8,6,5)*(21,12,24,9)*(11,22,10,23)*(15,30,14,31)*(16,32,13,2
9)*(27,28,26,25)*(19,20,18,17);G:=Group(a,b,c,d);e:=Elements(G);Print("\n");Print("
e= ",Size(e),"\n"); 

dd:=[ 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 64, 65, 
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 
160, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 
218, 219, 226, 227, 228, 229, 230 ];w:=[];ww:=[];tt:=[]; 

 
for i in  dd do 
ff:=Elements(SmallGroup(96,i)); 
for j in ff do 
AddSet(w,Order(j)); 
if w=[1,2,3,4,6] then AddSet(ww,i);fi; 
od;w:=[]; 
od; 
for i in ww do  
if Size(NormalSubgroups(SmallGroup(96,i)))=12 then 
Add(tt,i); 
fi; 
od; 
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