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ABSTRACT. Counting Kekulé structures is a very difficult problem in chemical 
graph theory. Some recent techniques allowed to estimate the lower bound 
of this number in certain classes of graphs. In this note a formula for the 
number of Kekulé structures in TUC4C8(R) nanotube is given.  
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INTRODUCTION  

Kekulé structures (perfect matchings in graph theory) in benzenoid 
hydrocarbons are discussed in the famous book of Cyvin and Gutman [1]. In 
physics, the enumeration of Kekulé structures is equivalent to the dimer problem 
of rectangle lattice graph in the plane [2]. The Kekulé count of nanostructures 
has become interesting subjects of research. Close formulas for the Kekulé 
count have been obtained in [3-6].  

A graph G consist of a set of vertices V(G) and a set of edges E(G). 
In chemical graphs the vertices of the graph correspond to the atoms of the 
molecule and the edges represent the chemical bonds. The number of vertices 
and edges in a graph will be denoted by |V(G)| and |E(G)|, respectively.  

A matching of a graph G is a set M of edges of G such that no two 
edges of M share an end-vertex; further a matching M of G is perfect if any 
vertex of G is incident with an edge of M. The concept of perfect matching in 
graphs coincides with the Kekulé structure in organic chemistry. In this paper we 
focus our attention on the number of Kekulé structures in TUC4C8(R) nanotube 
and a close formula is established, see [7-15] for details. 

A C4C8 net is a trivalent decoration made by alternating rhombi C4 
and octagons C8. It can cover either a cylinder or a torus. In some research 
papers, some topological indices of TUC4C8(R/S) nanotubes and TC4C8(R/S) 
nanotori have been investigated [16-22].  

In this paper the TUC4C8(R)[p,q] = TU[p,q] nanotube is considered, 
where p and q are the number of octagons in each row and column, respectively. 
We explain the methods for computing the number of Kekulé structures in 
TU[p,q] and compute exact formula for the number of Kekulé structures in 
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some special case of TUC4C8(R) nanotubes, see Figure 1 ( notice that the 
edges in the left side are affixed to the vertex in the right side of the figure 
to gain a tube in this way).  

 
Figure 1. The chemical graph of TU[5,3]. 

 
MAIN RESULTS AND DISCUSSION 

The aim of this section is to compute the number of Kekulé structures in 
TU[p,q] = TUC4C8(R)[p,q] nanotubes. The edges of rhombus in the molecular 
graph of TU[p,q] are called the rhomboidal edges while the other edges are 
named octagonal.  

 

LEMMA 1. Consider the molecular graph of TU[p,1] = TUC4C8(R)[p,1] and 
E is a Kekulé structure of TU[p,1] containing a horizontal edge, Figure 2. 
Then c, d ∉ E and a, b ∈ E.  
 

 
Figure 2. The molecular graph of TU[4,1]. 

 

PROOF. If E contains one of c or d then vertices shown by (x) could not be 
select in the matching, a contradiction. So, we must have the following 
figure for the matching: 
 

 
Figure 3. A part of a Kekulé structure without edges c and d. 

 

By considering Figure 3 and the fact that in the upper selected 
rhomb, all the vertices must be covered, we have the following scheme for our 
Kekulé structure: 

 

 
Figure 4. A part of a Kekulé structure containing a horizontal edge. 

 

 This completes our argument.                                                        ▲ 
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Corollary. There are exactly two Kekulé structure containing a given horizontal 
edge. These are as follows: 
 

   
Figure 5. A part of two possible Kekulé structures containing a horizontal edge. 

 
Theorem 1. Suppose K(p,1) denotes the number of Kekulé structures in a 
TU[p,1] nanotube. Then we have: 
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Proof. We first note there are 22p Kekulé structures when we consider only 
the rhomboidal edges of TU = TU[p,1], see Figure 6.  
 

 
Figure 6. Kekulé structure containing rhomboidal edges. 

 
 Clearly, each of the rhomboidal edge can take part to a Kekulé structure 
in two schemes. Since the number of rhombi is 2p, we have 22p different 
choice for the number of Kekulé structures. 
 We now apply Lemma 1, to enumerate the Kekulé structures containing 
at least one non-rhomboidal edge.  

 
Figure 7. A Kekulé structure containing non-rhomboidal edges. 

 
As it is shown in Figure 7, we have 2p − 4 rhombi, each of them 

belonging to two Kekulé structures and it is worth mentioning that this 
scheme can circulate in p situations. So, in this case we have p22p−4 Kekulé 
structures. Figure 8 shows a Kekulé structure when two of the octagonal 
edges in a row take part in matching. By lemma 1, we know that no two 
incident edges in a row may belong to a Kekulé structure. 

 

 
Figure 8. A Kekulé structure containing two of non-rhomboidal edges in a row. 
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At the end, we have a chain (Figure 9) that has two circulations for 
each of them. So we have 4 extra Kekulé structures, when p is even. 

 

 
Figure 9. The extra Kekulé structures, when p is even. 

 

 This completes our proof.                                                                ▲ 
 

Using a similar argument as Theorem 1, one can compute the 
number of Kekulé structures of TU[2,q]. 
 
Theorem 2. The number of Kekulé structure in TU[2,q] is .54 q×  
Proof. To calculate the number of Kekulé structure in TU[2,q], we first find a 
recursive equation for the number of Kekulé structures and then solve it. 
Suppose A(q) denotes the set of all Kekulé structures of TU[2,q] and xq is its 
size. From Figure 10, one can see that there are two types of Kekulé 
structures for TU[2,q] as follows: the first type Kekulé structures contain both e1 
and f1; the second type Kekulé structures are those without e1 and f1.  

Suppose L1 and L2 denote the number of Kekulé structures of the 
first and second types, respectively. Then from Figure 10, it can easily seen 
that L1 = 4xq−1. Suppose M is a Kekulé structure of the second type. Also, 
there are 4xq−2 Kekulé structures of the second type such that e2,f2 ∉ M. Continue 
this argument, we can see that xq = 4[xq−1 + xq−2 + … + x1]. To complete the 
proof, we must solve this recursive equation. To do this,  notice that xq−1 = 4[xq−2 + 
xq−3 + … + x1] and so xq − xq−1 = 4 xq−1. Therefore, xq = 5 × xq−1 which implies that 
xq = 5q−1 × x1. An easy calculation shows that x1 = 20 and so xq = 4 × 5q.              ▲ 
 

 
Figure 10. The Molecular Graph of TU[2,q]. 
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From Theorems 1 and 2, we can find an upper and lower bounds for 
the number of Kekulé structures of TU[p,q] as follows: 

Theorem 3. 2)54(
p

q×  ≤ K(p,q) ≤ pq )54( × . 
 
CONCLUSIONS 

In this paper a simple method enabling to compute the Kekulé 
structures of TUC4C8(R) nanotubes with a small number of rows or columns 
was presented. By this method an upper and lower bound for this number 
is also calculated. It is possible to extend our method in view of obtaining 
better bounds. 
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