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ABSTRACT. The structure based retrospective virtual screening algorithm 
employed the docking engine FRED (Fast Rigid Exhaustive Docking) to dock 
74 inhibitors (4-aryl-3-anilino-maleimide derivatives) and 1778 decoy molecules 
into glycogen synthase kinase-3 β, GSK-3β, ATP-binding site (PDB code 1Q4L).  

The input database of 74 ligands was prepared following the OpenEye 
protocol by adding tautomers and ionization states, generating conformers, 
and performing charge corrections with AM1BCC option from QUACPAC 
software. The protein preparation has been carried out with Chimera software 
by deleting water molecules (except water near Thr 138), adding hydrogen and 
charges (AM1BCC). The energy component values of the scoring functions were 
subsequently submitted to PLS-DA (Projections in Latent Structures, Discriminant 
Analysis). The final PLS-DA result contains only the essential energy factors that 
describe most accurately the interactions in the ATP binding site. The results 
obtained are of better quality than those obtained using the total scores 
provided by initial scoring functions in terms of AUC (Area Under Curve) 0.938 
(chemgauss2 donor + screenscore rotatable bonds) with respect to 0.887 
(chemgauss3). Moreover, the early enrichment of the PLS-DA term at 1% 
of the database is 13.514% while for Chemgauss 3 was only 8.108%. 

 
Keywords: molecular docking, Projections in Latent Structures - Discriminant 
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INTRODUCTION  

The identification of selective inhibitors of protein kinases by virtual 
screening strategies withdraw much interest in the area of drug discovery 
by helping in terms of time and money the high throughput screening (HTS) 
experiments [1]. GSK-3 is a serine/threonine protein kinase, discovered as the 
enzyme that inactivates the glycogen synthase (GS), the rate limiting enzyme 
in glycogen synthesis [2]. Besides glycogen metabolism regulation [2,3], GSK-
3 controls a large number of cellular processes such as microtubule stability [4],  
β-catenin degradation [5], protein translation [6], etc. 
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 Maleimide derivatives have been identified as ATP competitive inhibitors 
of GSK-3α at Smithkline Beecham pharmaceutical company by means of a 
high throughput screening experiment [7]. GSK-3 inhibition by maleimide 
derivatives caused the acceleration of glycogen synthesis in the liver suggesting 
the utility of maleimide inhibitors for the treatment of diabetes [3]. Moreover, 
additional biological investigations demonstrated that maleimide derivatives 
prevent neuronal death through a mechanism that involve, interactions with 
tau and β-catenin [8].  
 Structural characteristics of GSK-3 inhibitors have been investigated 
by various techniques including QSAR, docking and ligand based virtual 
screening [9,10,11,12,13,14,15]. 

Our investigation is directed towards a structure-based methodology 
due to the availability of X-ray cocrystal GSK-3β - maleimide derivative [16]. 
The high identity (similarity) of human GSK-3α and β 83% (89%) overall and 
91% (97%) of the catalytic domain [17] permitted us to use the X-ray stucture 
of GSK3 β to dock the maleimide inhibitors tested in GSK 3α [7]. The docking 
algorithm has to check that the chemical compounds make favorable interactions 
with the enzyme. Therefore, the set of inhibitors were mixed with a large number 
of inactives (decoys) in order to reproduce the real situation.  

Scoring functions, as they have been constructed, display a series of 
shortcomings, especially high false positive rates. Consensus scoring has been 
introduced to counterweight for false positive rates of individual scoring functions. 
But the selection algorithm for the right, individual scoring functions represents 
the major challenge [18]. Jacobsson et al.  [19] have used PLS-DA (Projections 
in Latent Structures - Discriminant Analysis) methodology to the total scores of 
individual scoring functions in order to improve the performance of individual 
scoring functions. In this paper we introduced the PLS-DA methodology [20] to 
the variables representing the components of individual scoring functions in 
order to get a new combination of terms that will rank more appropriately 
the actives with respect to inactives.  
 
 Dataset 

In our study, a dataset of 74 derivatives of 3-anilino-4-arylmaleimide [7] 
(Figure 1) and their biological activity, measured as inhibitory activity IC50 (nM) 
evaluated against human GSK 3α, is considered. Our dataset is assembled/ 
mixed with a decoy set of 1778 molecules (CDK-2 decoys) downloaded from 
DUD (Directory of Useful Decoys) [21].  

 
Figure 1. The template of maleimide derivatives (see ref 7): 

R = H, 2-Cl, 2-OMe, 2-NO2, 3-Cl, 3-OMe, 3-NO2, 4-Cl, 4-OMe, 4-NO2 
R1 = H, 3-Cl, 3-OH, 4-OH, 3-Cl-4OH, 3,5-diCl-4-OH, 3-CO2H, 4-Cl-3CO2H, 4-SMe 

R2, R3 = H, CH3 
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The CDK-2 decoys were chosen on the basis of high similarity of 
aminoacid binding sites (85%) of GSK-3 and CDK-2 [16]. In the current study 
we assume the decoys are inactive, even not experimentally tested on GSK-3. 
Therefore, they probably can be active on this target [21]. The distribution of 
drug-like properties of actives and decoys are shown in Table 1. 

 
Table 1. Drug-like properties of actives and decoys 

 
Molecular 

Weight 
Rotatable 

Bond 
Number 

Number of 
hydrogen bond 

donors 

Number of 
hydrogen bond 

acceptors 
MLOGP 

Actives      
min 264.3 0 2 4 -3.569 
max 575.68 12 5 12 2.773 
Decoys  
min 298.37 1 0 4 -5.974 
max 399.47 11 7 11 4.062 

 
 Protein preparation 

The crystal structure of GSK-3 β (PDB entry: 1Q4L) in complex with 
inhibitor 2-chloro-5-[[4-(3-chlorophenyl)-2,5-dioxo-pyrrol-3-yl]amino]benzoic 
acid was downloaded from the PDB. The active site of the enzyme was 
prepared using Chimera package [22] deleting water molecules except 
water near Thr 138, that was kept as it mediates the hydrogen bonds to Oγ 
of Thr138 and Oε2 of Gln185, [16] adding hydrogens and AM1BCC charges. 
 
 Assignment of ionization states and generation of tautomers 
 Database preparation before virtual screening analysis is important 
for the quality of the results. Kirchmaier demonstrated that tautomerism is 
essential for the classification of actives in virtual screening experiments [23]. 
The three-dimensional structures of 74 GSK-3α inhibitors were prepared using 
LigPrep 2.2 module of Maestro in the Schrödinger software [24]. For the 
ligands, the only reasonable tautomeric forms at pH=7.4±1.5 were selected.   
 
 Conformer generation 

Conformer generation for ligands and decoys was performed with 
Omega version 2.-2.3.2 from OpenEye package [25]. Biologically active 
fragment conformations are available in Omega's library. The ligand is split 
into fragments and next reassembled according to energetic criteria and the 
conformations complying with the energy window and heavy atom root mean 
square (RMS) distance were saved. We used an increment-based methodology 
for energy window of "5.0, 6.0, 7.0" kcal/mol, and RMS distance of the heavy 
atom coordinates for conformer detection of "0.5, 0.4, 0.3" Ǻ. The assignments 
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of appropriate atomic charges were carried out with QuacPac software [25], 
choosing AM1BCC option (AM1 bond charge correction). The resulting conformer 
enriched database of actives and decoys was used as input for docking.     
 
 Docking procedure 
 Docking investigation was carried out with FRED (Fast Rigid Exhaustive 
Docking) software version 2.2.5 (www.eyesopen.com) [25]. The docking 
procedure occurs in two steps: shape fitting and optimization. The ligand is 
placed into a 0.5Å resolution grid-box incorporating all active site atoms 
(including hydrogen atoms) using a smooth Gaussian potential [26]. To score 
the ligand in the docking procedure the binding site of GSK-3β was defined 
using the reference ligands and an addbox of 4Ǻ around the ligand. The best 
docked pose per each ligand was saved and seven classical scoring functions 
including Chemscore (CS), Chemgauss-2 (CG2), Chemgauss-3 (CG3), Shapegauss 
(SG), Screenscore (SC), OEChemscore (OECS), and PLP were used. 
 
 PLS-DA analysis 

In the present work, we attempted to implement a multivariate statistical 
method (PLS DA), with the values of scoring function components as descriptors, 
in order to classify the virtual screening results in active and inactive compounds 
[27]. PLS is a regression method that works with two matrices, X (e.g., chemical 
descriptors) and Y (e.g., biological responses), and has two objectives, namely 
to approximate well X and Y, and to model the relationship between them [28]. 
For PLS DA methodology two classes are defined: the actives (1) and the 
inactives (2) according to ligands and decoys.  

The energetic component outputs of all scoring functions (see reference 
[25]) were submitted to the SIMCA P 9.0 package [29] to perform initially a PCA 
(Principal Component Analysis) analysis [30], followed by the PLS DA analysis.  
 
RESULTS AND DISCUSSION 

In the first step of PLS DA analysis, a PCA model for the whole X matrix 
(N=1852 rows/compounds, and K=32 columns/energetic terms) was performed 
and three principal components were obtained. These three principal components 
explain 47.7% of the information content of the X matrix and distinguish 
very well the actives (in black) from the inactives (in red - Figure 2). 

The PLS DA models were further constructed starting from the same X 
matrix. In order to improve the PLS DA models, the coefficient sign and VIP >1 
(variable influence on projection) were considered as significant. Based on these 
criteria, six out of thirty two energetic terms were selected: CG2 Donor 
(Chemgauss2 contributions from donors on the ligand interacting with acceptors 
on the protein), CG3 Steric (Chemgauss3 steric interactions), CS HB (Chemscore 
hydrogen bonds), SC RB (Screenscore rotatable bond), SC Ambig (Screenscore 
ambiggous interactions), and SC HB (Screenscore hydrogen bonds). For these 
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six energetic terms, all the possible combinations were made and the first 
significant combination (CG2 Donor + SC RB) was selected. The sum of these 
terms represents the PLS-DA equal weight “mixed” scoring function.  

 

 
Figure 2. Classes of actives (in black) and  inactives (in red) 

 
In order to test the performance of the new “mixed” scoring function 

against classical scoring functions, the AUC and enrichment factors were 
compared. The results of ensemble AUC and enrichments are illustrated in 
Figure 3a and 3b.  

 
Figure 3.a) Bar chart showing AUC values obtained  

with seven classical and the new „mixed” scoring functions 
 
The AUC of 0.887 and enrichment factor of 8.108% at 1% of database 

show good performances of the classical CG3 at the beginning, but these 
results were surpassed by the corresponding values of  the “mixed” components 
(CG2 donor + SC RB) scoring functions AUC (0.938 and enrichment factor 
13.513 % at 1% of database for this combination).  
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Figure 3.b) Enrichment performances at 1%, 2%, 5%, 10% and 25% of the database 

 
Analyzing the classical CG2 and SC scoring functions, AUC is 0.735 

and respectively 0.459 while the enrichment factor is 0.011% / 0.011% by the 
top 1% database and show low performances, but the donor + rotatable bond 
components (CG2 Donor + SC RB) seems to be significant in this combination. 

The CG2 Donor energetic term into the “mixed” components scoring 
function measures the H-bond interaction energy between ligand and protein. 
The SC RB component is a penalty term proportional to the number of rotatable 
bonds in the ligand. SC RB is an important term in our situation since a number 
of compounds display a considerable number of flexible bonds in the decoys 
(up to 11) and ligands (up to 12).   

In the top 2% - 25% of the database, the number of detected actives 
increases and the largest percentage (93.243%) was retrieved at 25% in 
the case of new “mixed” scoring functions.   

 
CONCLUSIONS 
 Here we reported a promising workflow for structure-based virtual 
screening using rigid docking (FRED software) followed by PLS DA analysis. 
A new “mixed” scoring function was built. It collects the energy factors from 
different scoring functions that illustrate the particular interactions in the GSK3β 
site. In this way, the results here reported, are of better quality than those 
obtained by using every single scoring function available in the OpenEye 
package. The present study enabled us to indentify the optimal protocol for the 
highest enrichment of actives in the top 1% to 25% of the database for seven 
classical and one “mixed’ scoring function. Therefore, in the following studies the 
algorithm for docking scoring aiming at ranking the actives versus decoys will 
be based on all possible combinations. 
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