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ABSTRACT. A dendrimer is an artificially manufactured or synthesized 
molecule built up from branched units called monomers. In this paper, the 
mathematical tools of group theory have been used extensively for the 
analysis of the symmetry properties of these macromolecules. We prove 
that it is possible to write the symmetry of a dendrimer, as wreath product 
of some finite groups. To prove, we consider two infinite classes of dendrimers 
and compute their topological symmetry groups. 
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INTRODUCTION 

Dendrimers are one of the main objects of nanobiotechnology. They 
possess a well defined molecular topology. Their step-wise growth follows a 
mathematical progression. In an exact phrase, dendrimers are hyperbranched 
macromolecules, showing a rigorous, aesthetically appealing architecture 
[1-3].  

Group theory is one of the most important branches of mathematics 
for studying molecular structures of compounds. By using tools taken from 
the group theory, it is possible to evaluate chemical structures according to 
their symmetry. Here, by symmetry of a molecule, we mean the automorphism 
group symmetry of its molecular graph. This type of symmetry also called a 
topological symmetry, accounts only for the bond relations between atoms, 
and does not fully determine the molecular geometry. The symmetry of a 
molecular graph does not need to be the same as (i.e. isomorphic to) the 
molecular point group symmetry. However, it does represent the maximal 
symmetry which the geometrical realization of a given topological structure 
may posses [4]. 

We first recall some algebraic definitions that will be used in the 
paper. The symmetry of a physical object can be formalized by the notion 
of a group action: every element of the group "acts" like a bijective map on 
some set. To clarify this notion, we assume that G is a group and X is a set. 
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G is said to act on X when there is a map φ : G � X →X such that 
for all elements x ∈ X, (i) φ(e,x) = x where e is the identity element of G, 
and, (ii) φ(g, φ(h,x)) = φ(gh,x) for all g,h ∈ G. In this case, G is called a 
transformation group; X is called a G-set, and φ is called the group action. 
For simplicity we define gx = φ(g,x). In a group action, a group permutes the 
elements of X. The identity does nothing, while a composition of actions 
corresponds to the action of the composition. For a given X, the set {gx | g 
∈ G}, where the group action moves x, is called the group orbit of x. The 
subgroup which fixes is the isotropy group of x.  

Let G be a group and N be a subgroup of G. N is called a normal 
subgroup of G, if for any g∈G and x∈N, g-1xg∈N. Moreover, if H is another 
subgroup of G such that H∩N = {e} and G = HN = {xy | x∈H, y∈N}, then we 
say that G is a semidirect product of H by N denoted by H∧N. Suppose X is 
a set. The set of all permutations on X, denoted by SX, is a group which is 
called the symmetric group on X. In the case that X = {1, 2, …, n}, we 
denote SX by Sn or Sym(n).  

Let H be a permutation group on X, a subgroup of SX, and let G be a 
group. The set of all mappings X → G is denoted by GX, i.e. GX = {f | f: X 

→ G}. It is clear that |GX| = |G||X|. We put G∿H = GX × H = {(f; π) | f ∈ GX, 
π ∈ H}. For f ∈ GX and π ∈ H, we define fπ ∈ GX by fπ = foπ-1, where “o” 
denotes the composition of functions. It is easy to check that the composition 

law (f ; π) (f′ ; π′) = (ff′π ; π π′), makes G∿H into a group. This group is called 
the wreath product of G by H [5]. In some leading papers, Balasubramanian 
[6−13] introduced the wreath product formalism for computing symmetry of 
molecules. The present authors continued the mentioned works [14-27] to 
present a computational approach which is valuable in practical problems. 
Our calculation within the paper was done by the computer algebra system 
GAP [28], which is freely accessible from internet. 
 
RESULTS AND DISCUSSION 

In this section, we describe our computational approach by GAP in 
computing symmetry of dendrimer, Figure 1. This method is appropriate for 
molecules which consist of a number of XY2 or XY3 groups (as CH3 or NO2) 
attached to a rigid framework. An Example of such molecule is a dendrimer, 
which is considered here in some detail, see Figures 1 and 2. With a geometric 
consideration of dynamic symmetries of the molecules we will show that the 
symmetry group of the molecule can be specified by wreath product of some 
known groups. Then based on the structure of the group we apply GAP as a 
useful package for computing the generating set and also the group structure 
of this molecule.  
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Figure 1. The Forth Generation of 
Dendrimer Molecule D1[4]. 

Figure 2. The Forth Generation of 
Dendrimer Molecule D2[4]. 

 
At first, we consider the dendrimer molecule D1[n], Figure 1. In order 

to characterize the symmetry of this molecule we note that each dynamic 
symmetry operation of D1[1], considering the rotations of XY2 groups in 
different generations of the whole molecule D1[n], is composed of n 
sequential physical operations. We first have a physical symmetry of the 
framework (as we have to map the XY2 groups on XY2 groups which are on 
vertices of the framework). Such operations form the group G of order 6, 
which as is well known to be isomorphic to S3 or Sym(3). After accomplishing 
the first framework symmetry operation we have to map each of the three 
XY2 group on itself in the first generation and so on. This is a group 

isomorphic to H = ((…(Z2 ∿ Z2) ∿ Z2) ∿ … )∿ Z2) ∿ Z2 with n – 1 components. 

Therefore, the whole symmetry group is isomorphic to H ∿ G.  This is a group 

of order .  
 We now compute a generator set for this group. To do this, we apply 
computer algebra system GAP to find a generating set for D1[2], D1[3] and 
D1[4], see Table 1.  

 
Table 1. Generating Sets for D1[2], D1[3] and D1[4]. 

a1 = (1,2) a2 = (1,2,3) b1 = (4,5) b2 = (6,7) b3 = (8,9) b4 = (10,11) 

b5 = (12,13) b6 = (14,15) b7 = (16,17) b8 = (18,19) b9 = (20,21) b10 = (22,23) 
b11 = (24,25) b12 = (26,27) b13 = (28,29) b14 = (30,31) b15 = (32,33) b16 = (34,35) 
b17 = (36,37) b18 = (38,39) b19 = (40,41) b20 = (42,43) b21 = (44,45)  

 



M. MIRZARGAR, M.J. NADJAFI-ARANIA, A.R. ASHRAFIA 
 
 

 276 

Suppose B1 = {a1 , a2}, B2 = {b1 , b2 , b3}, B3 = {b4 , b5 , b6 , b7 , b8 , 
b9} and B4 = {b10 , b11 , b12 , b13 , b14 , b15 , b16 , b17 , b18 , b19 , b20 , b21}. Then 
B1 ∪ B2, B1 ∪ B2 ∪ B3 and B1 ∪ B2 ∪ B3 ∪ B4 are generating sets of the 
topological symmetry of D1[2], D1[3] and D1[4]. From these calculations, we 
define permutations  and , 2 ≤ i ≤ n, as follows: 

 

. 

Then B1 ∪ B2 ∪ B3 ∪ … ∪ Bn is a generating set for D1[n], where     Bi = 
{ }. 

We now consider the dendrimer molecule D2[n], Figure 2. The 
topological symmetry group of the core of this dendrimer is isomorphic to 
S4. This group can be generated by a1 = (1,2), a2 = (1,3) and a3 = (1,4). In 
order to characterize the symmetry of this molecule we note that each 
dynamic symmetry operation of D2[n], considering the rotations of XY2 
groups in different generations of the whole molecule D2[n], is composed of 
n sequential physical operations. We first have a physical symmetry of the 
framework (as we have to map the XY2 groups on XY2 groups which are on 
vertices of the framework). Such operations form the group G of order 24, 
which as is well known to be isomorphic to S4 or Sym(4). After accomplishing 
the first framework symmetry operation we have to map each of the four 
XY2 group on itself in the first generation and so on. This is a group 

isomorphic to H = ((…(Z2 ∿ Z2) ∿ Z2) ∿ … )∿ Z2) ∿ Z2 with n – 1 components. 

Therefore, the whole symmetry group is isomorphic to H ∿ G.  This is a group 

of order .  
Suppose B1 = {a1 , a2 , a3}, B2 = {b1 , b2 , b3 , b4}, B3 = {b5 , b6 , b7 , b8 

, b9 b10 , b11 , b12 } and B4 = {b13 , b14 , b15 , b16 , b17 , b18 , b19 , b20 , b21, b22 , 
b23 , b24 , b25 , b26 , b27 , b28 }, where bi's are defined as follows: 

 
Table 2. Generating Sets for D2[2], D2[3] and D2[4]. 

b1 = (5,6) b2 = (7,8) b3 = (9,10) b4 = (11,12) b5 = (13,14) b6 = (15,16) 

b7 = (17,18) b8 = (19,20) b9 = (21,22) b10 = (23,24) b11 = (25,26) b12 = (27,28) 
b13 = (29,30) b14 = (31,32) b15 = (33,34) b16 = (35,36) b17 = (37,38) b18 = (39,40) 
b19 = (41,42) b20 = (43,44) b21 = (45,46) b22 = (47,48) b23 = (49,50) b24 = (51,52) 
b25 = (53,54) b26 = (55,56) b27 = (57,58) b28 = (59,60)   
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Then B1 ∪ B2, B1 ∪ B2 ∪ B3 and B1 ∪ B2 ∪ B3 ∪ B4 are generating 
sets of the topological symmetry of D2[2], D2[3] and D2[4]. From these 
calculations, we define two permutations  and , 2 ≤ i ≤ 

n, as follows: 
 

, 

 

 
Then B1 ∪ B2 ∪ B3 ∪ … ∪ Bn is a generating set for D2[n], where  

Bi = { , …, }.  

 
CONCLUSIONS 

In this paper a general method for computing symmetry of a molecule 
is presented, which is useful for hyperbranched compounds. We apply our 
method for two different types of dendrimers and proved that the symmetry 
groups of these molecules can be reformulated as wreath product of a 
sequence of well-known finite groups. Using computer algebra system GAP 
the generating sets for these classes of dendrimers were computed. Our 
method is general and can be applied to other dendrimers and nanostars. 
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