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ECCENTRIC CONNECTIVITY INDEX OF TOROIDAL FULLERENES 
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ABSTRACT. The eccentricity ε(u) is the largest distance between u and 
any other vertex x of G. The eccentric connectivity index ξ(G) of G is defined as 
ξ(G) . In this paper a new method is presented by which 
it is possible to compute the eccentric connectivity index of molecular 
graphs. We apply our method to compute the eccentric connectivity index 
of toroidal fullerenes. 
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INTRODUCTION  

The discovery of C60 bucky-ball, which has a nanometer-scale 
hollow spherical structure in 1985 by Kroto and Smalley revealed a new 
form of existence of carbon element other than graphite, diamond and 
amorphous carbon [1,2]. Fullerenes are molecules in the form of cage-like 
polyhedra, consisting solely of carbon atoms. Suppose p, h, n and m are 
the number of pentagons, hexagons, carbon atoms and bonds between 
them, in a given fullerene F. Since each atom lies in exactly 3 faces and 
each edge lies in 2 faces, the number of atoms is n = (5p + 6h)/3, the 
number of edges is m = 3/2n = (5p + 6h)/2 and the number of faces is f = p 
+ h. By the Euler’s formula n − m + f = 2, one can deduce that (5p + 6h)/3 – 
(5p + 6h)/2 + p + h = 2, and therefore p = 12, v = 2h + 20 and e = 3h + 30. 
This implies that such molecules made up entirely of n carbon atoms and 
having 12 pentagonal and (n/2 − 10) hexagonal faces, where n ≠ 22 is a 
natural number equal or greater than 20 [3,4]. 

Let G = (V, E) be a connected bipartite graph with the vertex set V = 
V(G) and the edge set E = E(G), without loops and multiple edges. 
Suppose u and v are vertices of G. The distance d(u,v) is defined as the 
length of a shortest path connecting them. The eccentricity ε(u) is the 
largest distance between u and any other vertex x of G. The maximum 
eccentricity over all vertices of G is called the diameter of G and denoted by 
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D(G) and the minimum eccentricity among the vertices of G is called radius 
of G and denoted by R(G). The set of vertices whose eccentricity is equal 
to the radius of G is called the center of G. It is well known that each tree 
has either one or two vertices in its center. The eccentric connectivity index 
ξ(G) of G is defined as ξ(G) =  [5-9]. We encourage 
the reader to consult papers [10-13] for mathematical properties of this new 
proposed topological index. 
 
RESULTS AND DISCUSSION 

In this section, the eccentric connectivity index of a toroidal fullerene 
is computed [14,15]. To do this, we apply an algebraic approach. Let us 
recall some definitions and notations. An automorphism of a graph G is a 
permutation g of the vertex set V(G) with the property that, for any vertices 
u  and v, g(u) and g(v) are adjacent if and only if u is adjacent to v. The set 

of all automorphisms of G, with the operation of the composition of 
permutations, is a permutation group on V(G), denoted by Aut(G). Suppose 
G is a group and X is a set. G is said to act on X when there is a map φ : G 
× X → X such that for all elements x∈X (i) φ(e,x) = x, where e is the identity 
element of G, and,(ii) φ(g,φ(h,x)) = φ(gh,x) for all g, h ∈ G. In this case, G is 
called a transformation group on X, X is called a G-set, and ϕ is called the 
group action. For simplicity we define gx = ϕ(g,x). In a group action, a group 
permutes the elements of X .The identity does nothing, while a composition 
of actions corresponds to the action of the composition. For a given X ,the 
set {gx | g ∈ G}, where the group action moves x, is called the group orbit of 
x. If G has exactly one orbit, then G is said to be vertex transitive. It is 
easily seen that in a vertex transitive graph, degree of vertices are equal 
and it is denoted by r = r(G). In such a case G is called r-regular. The 
following simple lemma is crucial in this section. Here our notations are 
standard and mainly taken from [16-22]. 
 

Lemma 1 — Suppose G is a graph, A1, A2, …, At are the orbits of 
Aut(G) under its natural action on V(G) and xi ∈ Ai, 1 ≤ i ≤ t. Then ξ(G) = 

 In particular, if G is vertex transitive then ξ(G) = 
r(G)|V(G)|ε(x), for every vertex x. 
 

Proof — It is easy to see that if vertices u and v are in the same 
orbit, then there is an automorphism ϕ such that ϕ(u) = v. Choose a vertex 
x such that ε(u) = d(u,x). Since ϕ is onto, for every vertex y there exists the 
vertex w such that y = ϕ(w). Thus d(v,y) = d(ϕ(u), ϕ(w)) = d(u,w) and so ε(v) 
= max{d(v,y)}y∈V(G) = max{d(u,w)}w∈V(G) = ε(u). On the other hand, it is a well 
– known fact that the vertices of a given orbit have equal degrees. 
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Therefore, ξ(G) =  and if G is vertex transitive then 
ξ(G) = r(G)|V(G)|ε(x), for every vertex x. This completes our proof.        

     ▲ 

 
 
Figure 1. The Zig-zag Polyhex Nanotube. 
 

Apply our method on a toroidal fullerene R = R[p,q], in terms of its 
circumference (q) and its length (p), Figure 1. To compute the eccentric 
connectivity index of this fullerene, we first prove its molecular graph is 
vertex transitive.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2. A 2-Dimensional Lattice for T[p,q]. 
 

Lemma 2 — The molecular graph of a polyhex nanotorus is vertex 
transitive. 
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Proof — To prove this lemma, we first notice that p and q must be 
even. Consider the vertices uij and urs of the molecular graph of a polyhex 
nanotori T = T[p,q], Figure 2. Suppose both of i and r are odd or even and σ 
is a horizontal symmetry plane which maps uit to urt, 1 ≤ t ≤ p and π is a 
vertical symmetry which maps utj to uts, 1 ≤ t ≤ q. Then σ and π are 
automorphisms of T and we have πσ(uij) = π(urj) = urs. Thus uij and urs are in 
the same orbit under the action of Aut(G) on V(G). On the other hand, the 
map θ defined by θ(uij) = θ(u(p+1-i)j) is a graph automorphism of T and so if 
“i is odd and r is even” or “i is even and r is odd” then again uij and urs will 
be in the same orbit of Aut(G), proving the lemma.                       ▲ 
 

Theorem 3 — ξ(T[p,q]) = 3pq2. 
 

Proof — From Figure 2, it can easily seen that |V(T[p,q])| = pq. By 
Lemma 2, T[p,q] is vertex transitive and by Lemma 1, ξ(T[p,q]) = 3pqε(x), 
for a vertex x. Now the proof is follows from this fact that ε(x) = q, proving 
the result.                 ▲ 
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