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GENERALIZED ZAGREB INDEX OF GRAPHS

MAHDIEH AZARI?, ALI IRANMANESH"

ABSTRACT. In this paper, we introduce the generalized Zagreb index of a
connected graph and express some of the properties of this index. Then
we find the generalized Zagreb index of some nanotubes and nanotori.

Keywords: The first and second Zagreb indices, Generalized Zagreb index,
Nanotubes, Nanotori.

INTRODUCTION

Throughout this paper, we consider only simple, undirected, connected
and finite graphs. A simple graph is a graph without any loops or multiple
edges. Let G be a graph with the set of vertices V(G) and the set of

edges E(G). We denote by deg, (u), the degree of a vertex U of G which

is defined as the number of edges incidentto U.

A topological index of G is a real number related to G and it is
invariant under all graph isomorphism. In Chemistry, graph invariants are
known as topological indices.

Wiener index, introduced by Harold Wiener in 1947, is the first
topological index in Chemistry [1-2]. Wiener index of G is defined as the
sum of distances between all pairs of vertices of G.

Zagreb indices were defined about forty years ago by Gutman and
Trinajestic [3]. The first and second Zagreb indices of G are denoted by

M,(G) and M,(G), respectively and defined as follows:
M,(G) = } degs(u)® and M,(G) = dege(u)degs (V).
uv (G) wE(G)

We refer the reader to [4-9], for more information about these indices.

In this paper, we introduce the generalized Zagreb index of a
connected graph and express some of the properties of this index. Then we
find the generalized Zagreb index of some nano-structures.
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DEFINITIONS AND PRELIMINARIES
Let G be a graph with the set of verticesV (G) and the set of edges E(G).

Definition 2.1 Generalized Zagreb index of G is defined as follows:
If r and s are arbitrary nonnegative integers, then

M 4(G)= D (degq(u)" degs(v)® +dege (u)® degs(v)') and

WIE(G)

M{O,—l} G)= [V(G)|
In the next Theorem, we express some of the properties of this index. Its
proof follows immediately from the definition, so is omitted.

Theorem 2.2 The generalized Zagreb index of a graph G satisfies
the following conditions.

0] M{r,s} (G) = M{s,r} ©G);

(i) Mo (G) = 2E(G)
(iii)My,,(G) =M, (G);
(V)M (G) =2M,(G);
VM (G) = zdege (U)r ;

uv (G)

(V)M ,(G) =2 Z (degg (u) degg (V)" -

WIE(G)
Let P, C,, S,, K, and W, denote the n-vertex path, cycle, star,
complete graph and wheel respectively. Let K, be complete bipartite graph

on a+b vertices. Determining the generalized Zagreb index of these
graphs is a matter of simple counting, so the proof of the next Theorem is
also omitted.

Theorem 2.3
(Mg () =27+ 27+ (n =32,

(ii)M, 4 (C,) =n2""%;

()M, 4(S,) = (=)™ +(n-1)°"

(V)M 4 (K,) =n(n-™;

VMg W) =(n=D[2x3™ +3'(n=1)* +3(n-1)'[;

(vi) M{r,s} (Ka,b) — ar+1bs+1 + as+1br+1'

Lemma 2.4 If H is a subgraph of G, then M, 4 (H) <M, 4(G).

Proof. The proof is obvious|
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Theorem 2.5 If T is a tree with exactly n vertices, then
M{r,s} (Pn) < M{r,s} (T) < M{r,s} (Sn) .
Proof. The proof is straightforward.]

Theorem 2.6 If G is a graph with n vertices, then
M{r,s} (Pn) S M{r,s} (G) < M{r,s} (Kn) .

Proof. Since G is simple, then |V(G)| =n. So for every uV(G),
deg (u) < n-—1. Consequently,
1 1
|E(G)| ZE Zdege(u) 55 Z(n—l) =

uv (G) uv (G)

M 4(G)= D (degs(u)’ dege (v)® +degs (u)*degs(v)') <2 > (n-1)™ =

[uVIDE(G) [uVIOE(G)

E@<2n-1* M = nn- 2wy (k).

M. Therefore

2(n-1n™*

It is a well-known fact that G has a subgraph T with n vertices, which is
also a tree. Combining the previous Theorem and Lemma 2.4, we can
obtain the desired results. |

RESULTS AND DISCUSSION

Carbon nanotubes (CNTSs) are allotropes of carbon with molecular
structure and tubular shape, having diameters of the order of a few nanometers
and lengths up to several millimeters. Nanotubes are categorized as single-
walled (SWNTSs) and multi-walled (MWNTSs) nanotubes. In 1991, lijima discovered
carbon nanotubes as multi-walled structures [10]. When a nanotube is bent so
that its ends meet a nanotorus is produced. In this section, we calculate the
generalized Zagreb index of some nanotubes and their related nanotori.

3.1 Generalized Zagreb index in nanotubes and nanotori

A polyhex net is a trivalent covering made entirely by hexagons C;.
It can cover either a cylinder or a torus. Next, the polyhex covering can be
modified, e.g., by the Stone-Wales isomerization [11], as shown by Diudea
[12-15]. In the following, the generalized Zagreb index will be calculated in
a series of nanotubes and their corresponding nanotori.

3.1.1. Polyhex nanotubes and nanotori

Let G=TUZC,(p,q) be an arbitrary zigzag polyhex nanotube,
where p is the number of horizontal hexagons in each row and q is the
number of zigzag lines in the molecular graph of G (see Figure 1). Then
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V(G)| =2pq, |[E(G)| =3pg - p and we have:
M, ¢ (G) =4p(2'3° +2°3") +(3pq-5p)(3'3° +3°3") =
p(2r+233 + 23+23r + 2(3q _ 5)3r+5) )

Figure 1. TUZC,(8,8)

Let T=TZC,(p,q) be the nanotorus related to the nanotube TZC6(p,q).
Then,V(T)| = 2pq,|E(T)| = 3pgand
My (T) =3pg(3'3 +3°3') = 2pg3 ™.

Let G=TUAC,(p,q) be an arbitrary armchair polyhex nanotube,

where p is the number of horizontal hexagons in one row and q is the
number of rows in the molecular graph of G (see Figure 2). Then

V(G)| =2pq, |[E(G)| = 3pg-2p and we have:
M 4 (G) = 4p(2'3° +2°3")+2p(2'2° +2°2") +(3pg —8p)(3'3° +3°3') =
p(2r+235 + 25+23r + 2r+s+2 + 2(3q _ 8)3r+5) .

SXXLXXXD

Figure 2. TUAC(4,16)

Let T =TAC,(p,q) be the nanotorus related to G. Then V(T)| = 2pq,
|E(T)| = 3pq and M{r’s} (T) = 3pq(3r35 + 353f) — 2pq3r+s+l.
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3.1.2 C,C4(p,q) nanotubes and nanotori

A C,C; netis a trivalent decoration made by alternating C, and C;.

It can cover either a cylinder or a torus.
Let G =TURC,C,(p,q) (R means rhomb, see Figure 3). We denote

the number of rhombs in each row by p and the number of rhombs in each
column by g. Then |V(G)| = 4pq, |E(G)| = p(6q—1) and we have:

My, 4 (G) =4p(2'3° +2°3") +(6pq - 5p)(3'3° +3°3") =
p(2r+238 + 25+23r + 2(6q _ 5)3r+5) )

Figure 3. TURC,C,(8,4)

Now, let T =TRC,C;(p,q) be the nanotorus related to G. Then
|V(T)| = 4pq1|E(T)| = 6pq and M{r,s} (T) = 6pq(3r3s +3$3r) — 4pq3r+$+1.

Let G =TUSC,Cy(p,q) (S means square, see Fgure 4). We denote
the number of squares in one row by p and the number of rows by

g(g=2). Then [\/(G)| =4pq, |E(G)| = p(6g —2) and we have:

M 4(G) =4p(2'3° +2°3" +2""° +(39-4)3"").

TR I

Figure 4. TUSC,C,(4,8)
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Now, let T =TSC,C,(p,q) be the nanotorus related to G. Then
|\/(T)| = 4pq ) |E(T)| = 6pq and M{r,s} (T) = 6pq(3r35 +353r) — 4pq3r+s+1 -

3.1.3 C.C,(p,q) nanotubes and nanotori
A C.C, netis atrivalent covering made by alternating C, and
C, . It can cover either a cylinder or a torus.

Let G=TUHC,C,(2p,q) (see Figure 5), where 2p is the number of

pentagons in each row. In this nanotube, the four first rows of vertices and
edges are repeated, alternatively. We denote the number of this repetition
by g. In each period of this nanotube, there are 16p vertices and we have q

periods. So |V(G)| =16pq. Also, the number of edges in each period is
equal to 24p except from the last period which has 22p edges. So
|E(G)| = 24pq-2p and we have:

M, 4(G)=8p(2'3° +2°3") +(24pq-10p)(3'3 +3°3') =

4p(213° +2°"3" +3" +3° + (129 - 5)3"*).

Figure 5. TUHC,C,(8,2)

Let T =THC,C,(2p,q) be the nanotorus related to G. Then [V (T)| =16pq,
|E(T)|=24pq and M, 4 (T) = 24pq(3'3° +3°3") =16pg3’"*".
Let G =TUVC.C,(2p,q) (see Figure 6), where 2p is the number of

heptagons in each row. In this nanotube, the four first rows of vertices and
edges are repeated, alternatively. We denote the number of this repetition
by g. In each period of this nanotube, there are 16p vertices and we have q

periods. So |V(G)| =16pg. Also, the number of edges in each period is
equal to 24p expect from the last period which has 21p edges. So
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|E(G)| = 24p(q-1) +21p = 24pq - 3p and we have:
M, 4 (G) =10p(23° +2°3") + p(22° +2°2") + (24pq -14p)(33° +3°3) =
2p(5(2"3° +2°3") + 2'*° + 2(12q - 7)3'").

Figure 6. TUVC.C,(8,2)

Let T =TVC,C,(2p,q) be the nanotorus related to G. Then |V(T)| =16pq,
|E(T)| = 24pg and M, 4 (T) = 24pq(3'3° +3°3") =16pg3" .
Let G =TUSC.C,(p,q) (S means spiral, see Figure 7). We denote

the number of pentagones in the first row by p. In this nanotube, the two
first rows of vertices and edges are repeated, alternatively. We denote the
number of this repetition by g. In each period of this nanotube, there are 8p
vertices except from the last period which has 6p vertices. Hence

V(G)|=8p(q-1)+6p=8pq-2p. Also, the number of edges in each
period is equal to 12p except from the last period which has 7p edges. So
|E(G)|=12p(q-1) +7p=12pg-5p and we have:

M, 4(G) = 6p(2'3°+2°3 ) + p(2'2° +2°2") + (12pq—-12p)(3'3F +3°3") =
p(2r+13s+1 + 25+13r+1 + 2r+s+1 + 8(q _1)3r+s+1) .

Figure 7. TUSC.C, (4,4)

65



MAHDIEH AZARI, ALI IRANMANESH

Let T =TSC,C,(p,q) be the nanotorus related to G. Then V(T)|=8pq,
|E(T)| :12 pq and M{T,S} (T) :12 pq(3r35 +353I’) - 8pq3r+3+1.

3.1.4. XAC.,C,(p,q) nanotubes and nanotori

Let G = TUHAC.C, (p,q) (see Figure 8). We denote the number of

heptagons in the first row by p. In this nanotube, the three first rows of
vertices and edges are repeated, alternatively. The number of this
repetition is denoted by g. In each period of this nanotube, there are 8p

vertices and we have g periods. Hence |V(G)| =8pq. Also, the number of
edges in each period is equal to 12p except from the last period which has
11p edges. So |E(G)| =12p(q-1) +11p =12pg - p and we have:

M 4(G)=4p(2'3° +2°3") +(12pg-5p)(33° +33') =

2p(213° + 253" +(129-5)3").

Figure 8. TUHAC.C, (8,2)

Let T =THAC,C,(p,q) be the nanotorus related to G. Then V(T)| =8pq,
|E(T)|=12pqg and M, 4 (T) =12pg(3'3° +3°3") =8pg3™*".
Let G =TUVAC.C,(p,q) (see Figure 9). In this nanotube, the three

first columns of vertices and edges are repeated, alternatively. We denote
the number of this repetition by g and the number of vertical lines in the first
column of each period by p. In each period, there are 8p vertices and 12p-3

edges. So |V(G)| =8pq and |[E(G)| = (12p~-3)g and we have:
M, o (G) =8q(2'3" +2°3') +2q(2'2° + 2°2') + (12p-13)q(3 3 +33) =
20(2723° + 25723 + 2 4 (12p —-13)3%) .
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Figure 9. TUVAC.C, (4,4)

Now, let T =TVAC.C,(p,q) be the nanotorus related to G. Then
|V(T)| = 8pCI’|E(T)| :12pq and M{r,s} (T) :12pq(3r3s +3$3r) — 8pq3r+s+l.

3.1.5 C,C,C,(p,q) nanotubes and nanotori
A C.,C,C, netis a trivalent decoration made by alternating C,, C;
and C,. It can cover either a cylinder or a torus.

Let G =TUHAC.C,C,(p,q) (see Figure 10). We denote the number

of pentagons in the first row by p. In this nanotube, the three first rows of
vertices and edges are repeated, alternatively. We denote the number of
this repetition by g. In each period of this nanotube, there are 16p vertices

and we have q periods. So |V(G)| =16pq. Also, the number of edges in

each period is equal to 24p expect from the last period which has 22p
edges. So |E(G)| = 24p(q-1) +22p = 24pq - 2p and we have:

M, 4 (G) =8p(2'3° +2°3") +(24pq —-10p)(3'3° +3°3") =
4p(2'3° +2°"3" + (129 -5)3"").

Figure 10. HAC,C,C, (4,2)

Now, let T =THAC.,C,C,(p,q) be the nanotorus related to G. Then
V(T) =16pq, |E(T)| = 24pq and
My, 4 (T) = 24pq(3'3° +3°3') =16pg3 "
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Let G =TUVAC.C,C,(p,q)(see Figure 11). In this nanotube, the

three first columns of vertices and edges are repeated, alternatively. We
denote the number of this repetition by g and the number of pentagons in
each period by p. In each period of this nanotube, there are 16p vertices

and 24(p-1)+21 edges and we have q periods. So [\/(G)| =16pq and
|E(G)| = 24pq - 3q and we have:

M, 4 (G) =80(2'3° +2°3") +2q(2'2° + 2°2") + (24pq —14q)(3'3° +3°3') =
2q(2713° + 213" + 2" +(24p -13)3™*) .

Figure 11. VAC,C,C,(2,4)
Let T =TVAC,C,C,(p,q) be the nanotorus related to G. Then

V/(T) =16pq, [E(T)| = 24pgand

M {r.s (=24 pq(3r 3+ 353r) =16 pq3r+s+1.

The coverings and notations for nanotubes and nanotori are taken
from Diudea’s papers [11-14].

3. 2. CLASSICAL ZAGREB INDICES IN NANOTUBES AND NANOTORI
In this section, as the results of the previous section and Theorem

2.2, we derived the first and second Zagreb indices of the above-mentioned

nanotubes and nanotori. They are been listed in the following tables.

Table 1. First and second Zagreb indices of some nanotubes

1
Nanotube G M,(G) = M, (G) MQ(G):EM{M}(G)

TUZC,(p,q) 2p(99-5) 3p(99-7)
TUAC,(p,q) 2p(99-10) p(279-40)
TURC,C,(p,q) 2p(189-5) 3p(189-7)
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Nanotube G Mi(G)= Mg (G) | M,(G) = % My (G)
TUSC,C,(p,q) 4p(99-5) 2p(274-20)
TUHC.C,(2p,q) 4p(360-1) 6p(364-5)
TUVC,C,(2p,q) 6p(249-5) 2p(1089-31)
TUSC,C,(p,q) 2p(364-19) 4p(279-17)
TUHAC,C, (p,q) 2p(369-5) 3p(360-7)
TUVAC,C, (p,q) 60(12p-5) q(108p-61)
TUHAC,C.C,(p,q) 4p(364-5) 6p(360-7)
TUVAC.C,C,(p,q) 2q(72p-25) q(216p-85)

Table 2. First and second Zagreb indices of some nanotori

TVAC,C,C, (p,q)

Nanotorus T | My(T)= M4 (G) | M,(T) = % M4 (G)
TZC¢(p,q) 18pq 27pq
TAC,(p.9)

TRC,C;(p,0) 36 pq 54pq

TSC,Cq(p.0)

THC.C,(2p,q) 144pq 216 pq
TVC,C,(2p,0q)

TSC,C,(p,q)

THAC,C,(p,q) 72pq 108pq
TVAC,C,(p,q)
THAC,C:C,(p,q) 144pq 216 pq

CONCLUSIONS

The generalized Zagreb index was defined and next formulas for
calculating this new topological index in some nanotubes and nanotori
were derived. The classical Zagreb indices formulas for the considered
nanotubes and nanotori were tabulated.
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