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ABSTRACT. As part of our current efforts to understand the mechanisms 
of oxygen-oxygen bond cleavage in biological metal complexes, density 
functional theory (DFT) calculations are employed to calculate the vibrational 
spectra of the Fe(III)-hydroperoxo adduct of bleomycin and of its more stable 
cognate Co(III)-hydroperoxo, as models for the ABLM form of bleomycin 
thought to be key in its biological activity. In addition to bleomycin, we examine 
another Fe(III)-hydroperoxo complex, [Fe(III)(N4Py)(OOH)]2+. The theoretical 
predictions show errors of 20-100 cm-1 with respect to experiment, and 
reproduce some of the experimental trends, with the important observation that 
the vibrational modes are far more complex than usually assumed.  
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INTRODUCTION 

Bleomycin is a drug whose action involves chelating a metal center 
and then damaging DNA within living cells. A key intermediate in bleomycin’s 
anti-DNA action is a species known as activated bleomycin, ABLM, which, 
on the basis of spectroscopic and theoretical studies, appears well described as 
a bleomycin-ferric-hydroperoxo adduct (cf. Figure 1). ABLM’s instability has 
to some extent precluded detailed structural characterization.[1-3] A somewhat 
more stable cognate, the Co(III)-hydroperoxo bleomycin adduct, has been 
characterized spectroscopically, and its inferred structural features appear 
very similar to those of ABLM.[4-12] 

The reactivity of the Fe-O-OH moiety is central to bleomycin’s 
therapeutic activity. Arguably, the most direct spectroscopic probe available 
to date for bonding in metal-hydroperoxo bleomycin adducts is vibrational 
spectroscopy. Although vibrational data is not available for the Fe-O-OH 
modes in ABLM, a detailed vibrational analysis of Co(III)-hydroperoxo bleomycin 
has recently been reported.[5,6] Here, we attempt to employ density functional 
(DFT) calculations to calculate the vibrational spectra of Fe(III)-hydroperoxo 
and Co(III)-hydroperoxo bleomycin. In addition to bleomycin, we examine an 
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Fe(III)-hydroperoxo complex for which vibrational data is available, namely, 
[Fe(III)(N4Py)(OOH)]2+.[13,14] The theoretical predictions show errors of 
20-100 cm-1 with respect to experiment, and reproduce some of the experimental 
trends, with the observation that the vibrational modes are far more complex 
than usually assumed.  

 
RESULTS AND DISCUSSION 

Figure 1 shows the models employed in the present work. Table 1 
lists key calculated geometrical parameters for the three models of Figure 
1. These parameters are in good agreement with previously reported data 
on related iron-hydroperoxo species.[3,13-22] 
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Figure 1. Models employed in the present work. The two ammonia ligands 

in the bleomycin structure are modelling terminal amine groups otherwise 
connected to the rest of the macro-chelate unit. 

 
Table 2 lists calculated vibrational modes for the Co-OOH moiety. 

At the outset, we note that the νCo-OOH and νO-OH modes are far from pure: 
they are mixed with each other as well as with several other metal-nitrogen and 
bleomycin-based modes, such that several calculated vibrational modes have 
consistent νCo-OOH and νO-OH character. Resonance Raman experiments on 
Co(III)-OOH bleomycin as well as on various Fe(III)-OOH complexes have 
consistently identified one single experimentally detectable vibrational mode 
for νCo-OOH and one for νO-OH.[3,6,10,13,14,23] The calculated frequencies are 
within 20-90 wavenumbers from the experimental data. 
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Table 1. Key calculated bond lengths (Å) and angles for the three models of Figure 1. 

Co(III)-OOH bleomycin 
Co-O 1.90 Co-N(amide)b 1.96 
O-OH 1.50 Co-N(imid)c 2.00 
Co-O-OH 112º Co-N(py)d 1.99 
Co-NH3(cis)a 2.04 Co-N(trans)a 2.04 
Fe(III)-OOH bleomycin 
Fe-O 1.80 Fe-N(amide)b 1.96 
O-OH 1.53 Fe-N(imid)c 2.03 
Fe-O-OH 113º Fe-N(py)d 2.03 
Fe-NH3(cis)a 2.09 Fe-N(trans)a 2.09 
[Fe(III)(N4Py)(OOH)]2+ 
Fe-O 1.79 Fe-N(axial) 2.03 
O-OH 1.48 Fe-N(py)d 2.00 
Fe-O-OH 120º   
a positions cis and trans relative to the OOH ligand. b amide nitrogen atom.  
c imidazole nitrogen atom. d pyridine/pyrimidine nitrogen atoms (for 

[Fe(III)(N4Py)(OOH)]2+, the average of four distances is shown). 
 
 

Table 2. Calculated vibrational modes for the bleomycin Co(III)-OOH model. 
Shown in bold is previously reported experimental data.[6,10] 

vibration Co(II)-OOH 
νCo-OOH 517, 520 / 548 
νO-OH 744, 748, 750, 787 / 828 
νOO-H 3579 

 
 

Table 3 lists calculated vibrational modes for the Fe-OOH moiety in 
the bleomycin model. Similar to the cobalt case discussed above, the νO-OH 
mode is far from pure, contrary to previous B3LYP results.[3] Table 4 lists 
vibrations calculated for the related complex, [Fe(III)(N4Py)(OOH)]2+, for 
which experimental data exists.[14] 

 
 

Table 3. Calculated vibrational modes for the bleomycin Fe(III)-OOH model. 
Shown in bold is previously reported theoretical data.[3] 

vibration Fe(III)-OOH 
νFe-OOH 465 / 575 
νO-OH 647, 664, 672, 737 / 879 
νOO-H 3568 
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A comparison of the O-OH stretching frequencies in the three models 
reveals that they do not correlate with the calculated bond length: the order 
is Co-OOH > Fe-OOH(bleomycin) > Fe-OOH(N4Py) for the calculated 
frequencies and Fe-OOH > Co-OOH(bleomycin) > Fe-OOH(N4Py) for the 
calculated O-O bond lengths. On the other hand, the experimentally-determined 
frequencies are in the order Co-OOH > Fe-OOH(bleomycin) > Fe-OOH(N4Py), 
in good agreement with experiment. A similarly good agreement with experiment 
is found when comparing the metal-oxygen(OOH) stretching frequency, with 
Fe-OOH(N4Py) > Co-OOH. This order correlates well with the distinctly shorter 
calculated metal-oxygen bond in the iron model compared to the cobalt. 
 

Table 4. Calculated vibrational modes for the [Fe(III)(N4Py)(OOH)]2+ model.  
Shown in bold is previously reported experimental data.[14] 

vibration Fe(III)-OOH 
νFe-OOH 576 / 632 
νO-OH 638, 688, 700, 707 / 790 
νOO-H 3546 

 

CONCLUSIONS 

In models of activated bleomycin and in related structures, the theoretical 
predictions on vibrational spectra show errors of 20-100 cm-1 with respect 
to experiment in terms of peroxide-related vibrations, and reproduce some 
of the experimental trends; however, the vibrational modes are far more 
complex than usually assumed.  

 

EXPERIMENTAL SECTION 

Geometries were optimized and vibrational spectra were computed 
using the BP86 functional. This functional employs the gradient-corrected 
exchange functional proposed by Becke,[24] and the correlation functional by 
Perdew.[25] The 6-31G** basis set was used, as implemented in Spartan. [26] 
For the SCF calculations, a fine grid was used, and the convergence criteria 
were set to 10-6 (for the root mean square of electron density) and 10-8 (energy), 
respectively. For geometry optimization, convergence criteria were set to 
0.001 a.u. (maximum gradient criterion) and 0.0003 (maximum displacement 
criterion).  
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