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ABSTRACT. Quantitative structure activity relationships (QSARs) were 
developed to predict toxicity of metal ions (from the aquatic environment 
and soil) by correlating the biological activity, A=log(1/EC50), values with 
four ion descriptors, chosen to represent the binding tendencies of metals 
to ligands, electronic and electrical effects: the electronegativity coefficient 
(), enthalpy of hydration (Hhyd), the first hydrolysis constant (KOH) and the 
log(Z2/rE0), where Z2/r reflects the energy of an ion when interacting 
electrostatically with a ligand and E0 reflects the effects of atomic ionization 
potential. Most QSARs are developed for organic toxicants, with inorganic 
toxicants (metals) being under-represented. Successful predictive models 
for relative toxicity of metal ions (monovalent and divalent ones) using ion 
characteristics have been developed. Relative metal toxicity (Li+, Na+, K+, 
Ca2+, Ba2+, Cd2+, Co2+, Cu2+, Sr2+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+ and Zn2+) was 
predicted by least squares linear regression and several ion characteristics. 
Toxicity was most effectively predicted (R=0.84) with logKOH (where KOH is 
the first hydrolysis constant) and electronegativity, which reflects a metal 
ion tendency to bind to intermediate ligands such as biochemical functional 
groups with oxygen atom donors. These QSAR correlations could be 
useful in ecological risk assessment. 
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INTRODUCTION  

Quantitative Structure-Activity Relationships (QSARs) are empirical 
models that relate experimental properties/activities of compounds with 
their molecular structures. The rapid development of quantum theory and 
ab initio computational methods made possible the prediction of molecular 
properties of small isolated molecules within experimental error. QSARs 
have been widely applied to predict the bioactivity (toxicity or bioavailability) 
of organic compounds in pharmacology and toxicology. In contrast, models 
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correlating metal ionic characteristics with their bioactivity remain poorly 
explored. During the last one and a half century, many scientific researchers 
have tried correlations between physical and chemical properties of metal cations 
and their toxicity [1-5]. However, the majority of industrially and environmentally 
important chemical processes, and biochemical transformations in living 
organisms take place in heterogeneous condensed media and hence the use of 
QSARs that proceed directly from the endpoint of interest is an attractive and 
fast alternative to predict molecular properties in complex environments [6,7].  

The direct prediction of properties is in general not feasible either due to 
the lack of computing resources or lack of knowledge about the relationship 
between the structure and property. QSAR predictions for inorganic toxicity 
(especially for the toxicity of metal ions) are, however, less developed. In 
2000, a paper entitled, “QSARs for metals - fact or fiction?”, authored by Walker 
and Hickey [8] raised a number of issues. 

Newman and co-workers [1,2,5,9,10] developed a novel quantitative 
ion character–activity relationship (QICAR) to predict the relative toxicity of 
metal ions, based on metal–ligand binding tendency. The metal-biological system 
interaction, in terms of the nature of reacting species and the types of formed 
products, needs to be characterized. Tatara et al. (1997) argued [11] that the first 
hydrolysis constant reflects the metal ion’s tendency to bind to intermediate 
ligands. McKinney et al. (2000) also analysed the biological activity of metal 
ions [12]. Ownby and Newman further demonstrated that the QICAR approach 
is also suitable for prediction of toxicity in binary metal mixtures [5]. 

Metal toxicity is largely determined by the functional ionic selectivity of 
proteins (e.g., complexation, coordination, chelation, ion exchange, adsorption, 
etc.). The QSAR methods offer a new way to explore the interaction between 
the absorbed metal ions and the functional groups on the biomass [4,13-16]. 
Metals can cause toxicity at the cellular level [15-17] in plants by affecting 
the membrane permeability, by inhibiting, inducing or increasing the activity 
of enzymes and by activating the defending mechanisms against the increased 
metal phytotoxicity. 
 
RESULTS AND DISCUSSION 

The objective of this study was to establish a QSAR model between 
the metal ionic properties and their biological activity (EC50).  

Ion characteristics used in modelling (Table 1) were obtained from a 
variety of sources: Ionic radii (r) are from Shannon and Prewitt [18,19]  and 
CRC Handbook of Chemistry and Physics [20], the first hydrolysis constants 
(log KOH) are from Baes and Mesmer [21] and Brown and Allison [22], the 
E0 values were obtained from Kaiser [23], and average electronegativity 
values () were taken from Allred [24]. The mean effect concentration values 
(EC50) were taken from John T. Mccloskey [9]. 



CORRELATING METAL IONIC CHARACTERISTICS WITH BIOLOGICAL ACTIVITY USING QSAR … 
 
 

 193 

Table 1. Metal ion characteristics and biological activity (Aobs) used in regressions 
 

No. Ion EC50 
(µM/L) 

Aobs= 
|log(EC50)| 

 pKa= 
|logKOH| 

Hhyd 
(kJ/mol) 

SI= 
Z2/r 

E0 
(V) 

log(SI/E0) 

1. Mn2+ 1.571 0.196176 1.55 10.6 –1845.6 4.82 1.03 -0.68305 
2. Cd2+ 27.000 1.431364 1.69 11.7 –2384.9 4.21 0.40 -0.62428 
3. Ca2+ 94.702 1.976359 1.00 12.7 –1592.4 4.00 2.76 -0.60206 
4. Li+ 294.13 2.468547 0.98 13.8 –514.1 1.35 3.05 -0.13033 
5. K+ 625.24 2.796047 0.82 11.6 –320.9 0.72 2.92 0.142668 
6. Sr2+ 235.52 2.372041 0.95 13.18 –1444.7 3.54 2.89 -0.549 
7. Ba2+ 95.455 1.979799 0.89 13.82 –1303.7 2.94 2.90 -0.46835 
8. Zn2+ 35.000 1.544068 1.65 9.60 –2044.3 5.33 0.76 -0.72673 
9. Cu2+ 1.620 0.209515 1.90 8.96 –2100.4 5.48 0.16 -0.73878 
10. Hg2+ 0.919 0.03668 2.00 3.40 –1853.5 3.92 0.91 -0.59329 
11. Na+ 401.00 2.603144 0.93 14.48 –405.4 0.98 2.71 0.008774 
12. Co2+ 874.00 2.941511 1.88 9.65 –2054.3 5.33 0.28 -0.72673 
13. Ni2+ 566.00 2.752816 1.91 9.86 –2105.8 5.8 0.23 -0.76343 
14. Mg2+ 87.242 1.940726 1.31 11.42 –1922.1 5.56 2.38 -0.74507 
15. Pb2+ 1.150 0.060698 2.33 7.80 –1479.9 3.39 0.13 -0.5302 

 

Some data in Table 1 were calculated from the literature data, e.g., 
the biological activity Aobs =|log10(EC50)|, the polarizing power, Z2/r (where Z is 
the ion charge and r the ionic radius), the absolute difference in electrochemical 
potential between an ion and its first stable reduced state (E0), electronegativity 
(), the acidity of metal ions pKa like |logKOH| and the enthalpy of hydration 
Hhyd (kJ/mol). 

Since the usual statistic analysis demands the trial and test stages 
in validation, the ions metal of Table 1 were classified accordingly based on 
the best fit of the normal distribution of input data (EC50), as evidenced in 
Figure 1, such that each category of metal ions to be represented in both 
“trial” and ”test” sets of toxicants. 

We obtained structure activity relationships for all the possible correlation 
models considered for the data in Table I together with the corresponding 
statistics (simple correlation factor, standard error of estimation SEE). The 
results are given in Table 2. Data for the test set are given in Table 3. 

 

 
 

Figure 1. The plot of metal ions EC50 toxicities of Table 1. 
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Table 2. Structure activity relationships for the “Trial set” (9 ions metal) of Table 1  
(No. 1, 2, 3, 4, 5, 6, 7, 8, 9) 

 

No. Eq. Model R SEE 

1. Aobs = -2.7577 + 0.3755 pKa 0.7140 0.6983 
2. Aobs = 4.6933 -0.9319  + 0.3923 2 0.8407 0.5731 
3. Aobs = 2.7737 + 2.2807 log(SI/E0) 0.7328 0.6787 
4. Aobs = -11.7454 + 0.4123 pKa + 0.0823 Hhyd 0.7505 0.7112 
5. Aobs = 2.8364 + 0.0046 pKa - 0.6942 2 0.8467 0.5833 
6. Aobs = -0.8472 + 1.0689pKa – 0.0432pKa

2 -4.7761 + 1.19132 0.8531 0.6884 

 

Table 3. Observed and predicted activity for the “Test set” metal ions of Table 1 
(No. 10, 11, 12, 13, 14, 15) using model equations (1 to 6) from Table 2. 

 
 
As can be seen in Table 2, we obtained useful information about the 

structure parameters in correlation with electronegativity, acidity, heat of 
hydration, the size of ions (SI) and biological activity. For the metal ion 
series, the maximum of R (0.8467) is given by the two-variable model using 
pKa and 2 , A=f(pKa, 2), (eq. 5, Table 2) this being the most reliable 
correlation across the A models of Table 2. This also shows the second 
lowest SEE (0.5833) value. The best one-variable model is that using the 
electronegativity like  and 2 (R=0.8407; SEE=0.5731, eq. 2, Table 2) and 
next was the model using the size of ion (SI) and the absolute difference in 
electrochemical potential between an ion and its first stable reduced state 
(E0) with R=0.7328 (eq. 3, Table 2). 

The significant relationships, above presented, indicates that the 
toxicity of all series of metal ions can be best described in terms of pKa,  
pKa

2, , and 2, by a regression model. The toxicity (EC50) of the metal ion 
series could be also described by a multilinear regression model including 
the acidity and the electronegativity (eq. 6, Table 2) but the corresponding 
SEE is rather high. The best predictive ability (R=0,7437), is shown by the 
model 1, followed by the model 6 (R=0.7121). 

A predicted Metal 
Ion 

 

A 
observed Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Hg2+ 0.03668 -1.481 4.3987 1.420583 -162.887 0.07524 -2.49933 
Na+ 2.603144 2.67954 4.165933 2.793711 -39.1397 2.302594 2.161293 
Co2+ 2.941511 0.86587 4.327873 1.116247 -176.836 0.42721 0.676256 
Ni2+ 2.752816 0.94473 4.344521 1.032545 -180.987 0.349245 0.715898 
Mg2+ 1.940726 1.53051 4.145737 1.074419 -165.226 1.697615 1.513348 
Pb2+ 0.060698 0.1712 4.65173 1.564473 -130.325 -0.89646 0.201068 
 R 0.7436 0.6684 0.0276 0.0519 0.5990 0.7121 
 SEE 1.0014 1.1140 1.4972 1.4958 1.1993 1.0515 
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Dependent variable: Biological Activity
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Figure 2. Correlation between observed and calculated activity for the test 
compounds (NonGaussian) of Table1, cf. data in Table 2 for:  

a) model (I) of Eq. (1); b) model (II) of Eq. (2); c) model (III) of Eq. (3).  
d) model (IV) of Eq. (4); e) model (V) of Eq. (5); f) model (VI) of Eq. (6). 

 
 

These predictive models, if developed, could be very useful in areas 
where data on metal toxicity or sublethal effects are lacking or incomplete. 
Once a model has been developed with representative metals for a particular 
organism under certain environmental conditions, the relative effect of additional 
metals could be predicted. 
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The present analysis showed the parabolic dependence of activity 
on the acidity and electronegativity, as the most reliable model (the model 
5) on a collection of QSAR trial equation. 

Relatively high correlation coefficients were obtained in the present 
study between ion characteristics and biological activity. These types of 
information could be extremely useful in ecological risk assessment. 
 
CONCLUSIONS 

Our results (models of metal ion toxicity using ion characteristics) 
agree with the theory on toxicants interaction with the living organisms. 
Actually, for a group of metal ions (monovalent and divalent), the trial set of 
compounds provided a good parabolic dependency of the activity by means 
of the chemical transport index of electronegativity and first constant of 
hydrolysis, even the predictive ability did not support the trial test (due, maybe, 
of a limited data set). Such a behaviour is susceptible for further generalization 
in the future studies and will be reported in the subsequent communications. 
 
METHODS 

In predictive toxicology, we exploit the toxicological knowledge 
about a set of chemical compounds in order to predict the activity of other 
compounds [25].  

Ion characteristics of inorganic species can be used to predict the 
relative toxicity or sublethal effects of metal ions. Many of these characteristics 
reflect the binding tendency of metals to ligands. For example, polarizing 
power, Z2/r (where Z is the ion charge and r is the ionic radius), is a measure 
of strength of the electrostatic interaction between a metal ion and a ligand; 
the E0 (where E0 is the absolute difference in electrochemical potential 
between an ion and its first stable reduced state) reflects the ability of an 
ion to change its electronic state; electronegativity () is correlated with the 
energy of an empty valence orbital and reflects the ability of a metal to accept 
electrons, combining electronegativity with the ionic radius yields an index that 
quantifies the importance of covalent interactions relative to ionic interactions 
[14]; the acidity of metal ions pKa like |logKOH|, where KOH is the first hydrolysis 
constant: 


  OHOH]O)[M(HHOH]O)[M(H 3

1)(x
1n2

x
n2  (metal ions in aqueous 

solution behave as Lewis acids); the enthalpy of hydration  Hhyd of an ion 
is the amount of energy released when a mole of the ion dissolves in a large 
amount of water forming an infinite dilute solution in the process. 

Multilinear models have been in use since a long time. As linear 
equations, they are easy to use and relatively straightforward to interpret. 
For n instances they are defined as the coefficients that minimize the error 
on a system of n linear equations [26, 27, 28]: 
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n} ..., {1,i        dxbxbxby immiii  ...2211 , 

or in a more compact notation, ),( dbXy   where ...,...  denotes the 

normal dot product and b and d are the coefficients to learn. Multilinear 
models assume linear relationships between features and activities [26]. The 
prediction f(xq) is obtained by [25]:  

),()( dbxxf qq  . 
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