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ABSTRACT. In a connected graph G, the sum of distances between all 
its vertex pairs is known as the Wiener index. The edge-Wiener index is 
conceived in an analogous manner as the sum of distances between all pairs 
of edges of the connected graph. In this paper, we compute the edge-Wiener 
index of the rooted product of graphs and some types of dendrimers. 
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INTRODUCTION 

Let G  be a connected graph with the vertex and edge sets ( )V G and 

( )E G , respectively. Throughout this paper, we suppose that G  is connected. 

The Wiener index is defined as 
{ , } ( )

( ) ( , | ),
u v V G

W G d u v G


  where ( , | )d u v G  

denotes the distance between vertices u and v . 
This index was introduced by the chemist Harold Wiener [1] within 

the study of relations between the structure of organic compounds and their 
thermodynamic properties. It found many applications in chemistry, pharmaceutics 
etc [2- 9]. 

The edge-Wiener index version was defined in ref [10] as 

{ , } ( )
( ) ( , | ),0 4.ei i

e f E G

W G d e f G i


    For 0i  , 0 ( , | ) ( , | ( ))d e f G d e f L G , 

where, ( )L G  is the line graph of G , i.e. a graph of which vertices are the 

edges of G , with two vertices connected in ( )L G  whenever the corresponding  

edges of G are adjacent. 

Also 1
3

( , | )
( , | ) ,

0
d e f G e f

d e f G
e f


    

where 1( , | ) min{ ( , ), ( , ), ( , ), ( , )},d e f G d x u d x v d y u d y v such that e xy  

and f uv . Similarly, 2
4

( , | )
( , | ) ,

0
d e f G e f

d e f G
e f


  
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where, 2 ( , | ) max{ ( , ), ( , ), ( , ), ( , )}d e f G d x u d x v d y u d y v , such that e xy  
and f uv . Next, 1 2,d d  are not distances and 0 3( , | ) ( , | )d e f G d e f G  

for all { , } ( )e f E G  [10]. Thus for the first edge-Wiener index we have 
 

0 3 0 3
{ , } ( ) { , } ( )

( ) ( ) ( , | ) ( , | ).e e
e f E G e f E G

W G W G d e f G d e f G
 

     

 

And for the second edge-Wiener index: 4 4
{ , } ( )

( ) ( , | )e
e f E G

W G d e f G


  . 

The rooted product of graph G  and rooted graph H , GoH , is obtained 
by taking one copy of G and | ( ) |V G  copies of H , and by joining the root 

vertex of the ith copy of H to the ith vertex of G for 1,2,...,| ( ) |i V G . 

Let H be a labeled graph on n vertices, G be a sequence of n  rooted 
graphs 1,..., nG G , then ( )H G denotes the graph obtained by identifying the root 

of iG  with the ith vertex of H , which is called the rooted product of H by G . 

Thus, 
| ( )|

( ,..., )
V G

GoH G H H   [11]. 

In this paper, we compute the edge-Wiener index of the rooted 
product of graphs and also obtain this index for some dendrimers. 
 

Computation of the edge Wiener index of rooted product of graphs 
 

Lemma 1 [10]. Let m be the number of edges of the graph G , then 

0 1
( 1)( ) ( )

2e e

m m
W G W G

   and 4 2( ) ( )e eW G W G m  . 

Now, let H be a labeled graph on n  vertices and m edges, G be a 
sequence of n  rooted graphs; 1,..., nG G  such that iG  has in  vertices and im  

edges and ( )H G  be the rooted product of H by G , then ( )H G  will have 

1

n

i
i

M m m


   edges. We define 

( )
( ) ( , )

i

ki i k i
e E G

d G d e x


 
 

and 
( )

( ) ( , ), 1, 2,ki k i
e E H

d H d e x k


   

where ix is the root of iG , also we define 

1 2( , ) min{ ( , ), ( , )}, ( , ) max{ ( , ), ( , )}d e x d x u d x v d e x d x u d x v   
such that ( )x V G , ( )u E G  and e uv . 
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Proposition 1. Let H be a labeled graph on n  vertices and m edges, 
G be a sequence of n  rooted graphs: 1,..., nG G  such that iG  has in  vertices 

and im  edges. Let ( )H G  be the rooted product of H by G , then 

1 1 1
( ( )) ( ) ( ) ( ) ( )

n n n

ek ek i ek ki i i ki
i i i

W H G W G W H m d G m d H
  

     
 

1 1, 1 1,

1( ) ( , ), 1,2
2

n n n n

j ki i j H i j
i j j i i j j i

m d H m m d x x k
     

       

 
Proof. Let ; 1,..., ie m   , be an edge of iG , ; 1,..., je m  

 
be an 

edge of jG , i j , then,  

( , ) ( , ) ( , ) ( , ), 1, 2.k k i H i j k jd e e d e x d x x d e x k         

Hence 

1 1
( , ) ( , ) [ ( , ) ( , ) ( , )]

j jm m

k j k k i H i j k jd e G d e e d e x d x x d e x    
  

      

( , ) ( , ) ( ),j k i j H i j kj jm d e x m d x x d G    

1 1
( , ) ( , ) [ ( , ) ( , ) ( )]

i im m

k i j k j j k i j H i j kj jd G G d e G m d e x m d x x d G 
  

      

( ) ( , ) ( ),j ki i i j H i j i kj jm d G m m d x x m d G    

1, 1,
( , ) [ ( ) ( , ) ( )],

n n

k i j j ki i i j H i j i kj j
j j i j j i

d G G m d G m m d x x m d G
   

   
 

1 1, 1 1,
( , ) [ ( ) ( , ) ( )]

n n n n

k i j j ki i i j H i j i kj j
i j j i i j j i

d G G m d G m m d x x m d G
     

     
 

1 1, 1 1,
2 ( ) ( , )
n n n n

j ki i i j H i j
i j j i i j j i

m d G m m d x x
     

    
 

Now, let e be an edge ofH , then, 

1 1
( , ) ( , ) [ ( , ) ( , )] ( , ) ( )

j jm m

k j k k j k j j k j kj jd e G d e e d e x d x e m d e x d G 
  

     

1 1
( , ) ( , ) [ ( , ) ( )] ( ) ( )

m m

k j k i j j k i j kj j j kj kj j
i i

d H G d e G m d e x d G m d H md G
 

     

1 1 1 1
( , ) [ ( ) ( )] ( ) ( )

n n n n

k j j kj kj j j kj kj j
j j j j

d H G m d H md G m d H m d G
   

        
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Therefore, 

{ , } ( ( ))
( ( )) ( , | ( ))ek k

e f E H G

W H G d e f H G


   

1 { , } ( ) 1 1,

1( , | ) ( , )
2

i

n n n

k i k i j
i e f E G i j j i

d e f G d G G
    

      

1 { , } ( )
( , ) ( , | )

n

k i k
i e f E H

d H G d e f H
 

    

 

Thus, 
 

1 1 1
( ( )) ( ) ( ) ( ) ( )

n n n

ek ek i ek ki i i ki
i i i

W H G W G W H m d G m d H
  

       

1 1, 1 1,

1( ) ( , ), 1,2.
2

n n n n

j ki i j H i j
i j j i i j j i

m d H m m d x x k
     

     
 

 

Corollary 1. By the above assumption, we have  

0 1
( 1)( ( )) ( ( ))

2e e

M M
W H G W H G

    

and     4 2( ) ( ( ))e eW G W H G M  . 

where 
1

n

i
i

M m m


  . 

 

Proof. This follows from Lemma 1. 
 

Corollary 2. Let G be a connected graph with 1n  vertices and 1m  

edges, H be a rooted graph with 2n  vertices and 1m  edges, then, 
 

2
1 1 1 1( ) ( ) ( ) ( )ek ek ek kW GoH nW H W G m n d H    

1 1 1
2

2 2
1 1 1,

1( ) ( , ), 1, 2.
2

n n n

kj G
j i j j i

m d G m d i j k
   

      

 

Proof. Hence, 

1

( ,..., )
n

GoH G H H 
. Therefore, the result follows from 

proposition 1. 
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Lemma 2. Let , ,n n nK P C  and nS denote the complete graph, path, 

cycle and star on n  vertices, respectively. Also let ,a bK be the complete 

bipartite graph on the parts A  and B  of the sizes | |A a  and | |B b . Put 

( )
( ) ( , ), 1, 2.ki k

e E H

d G d e i k


   where i  is ith vertex of G . Then, 

(i) 1 ,( )i a b

ab b i A
d K

ab a i B

 
   

, 2 ,

2
( )

2i a b

ab b i A
d K

ab a i B

 
   

, 

(ii) 1 1 1, 1

0
( ) ( )

2i n i n

i A
d S d K

n i B


    

,  

(iii) 2 2 1, 1

1
( ) ( )

2 3i n i n

n i A
d S d K

n i B

 
    

, 

(iv) 1
( 1)( 2)( )

2i n

n n
d K

  , 2
2 ( ) ( 1)i nd K n   

(v) 

1

1
1 1

1

2 2
( )

2 2 1

k

j

i n k

j

j n k

d C

j k n k









 
 
   





,  

(vi) 

1

1
2 1

1

2 2
( )

2 1 2 1

k

j

i n k

j

j n k

d C

j k n k









 
 
    





, 

(vii) 
1 1

1
1 1

( ) ( 1)
n i i

i n
j j

d P j j
  

 

    , 
1

2
1 1

( )
n i i

i n
j j

d P j j
 

 

   . 

 

Proof. Straight forward. 
 

Computation of the edge Wiener index of some dendrimers 
 

Definition 1 (Generalized Bethe Tree). Let kB  be a generalized Bethe 

tree of k  levels (k>1) or a rooted tree in which vertices at the same level/ 
generation have the same degree [12]. For 1,2,..., ,j k  denote by 1k jd    and 
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1k jn   , the degree of the vertices at the level j  and their numbers, 

respectively. Thus, 1 1d   is the degree of the vertices at the level k  and kd  is 

the degree of the rooted vertex. On the other hand, 1kn  , pertaining to the 

single vertex at the first level, the root vertex. For example, 4B  is given in 

Figure 1. 
 

Proposition 2. Let kB  be a generalized Bethe tree. Then we have 

 

 
Figure 1. Generalaized Beth tree of 4 levels 

 
2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ( ) ( ) ) ( ( ) ),e k k e k k i k k i k k k k i k kW B d W B d d B m d B m d m d B m            
2 2 2

2 2 1 1 2 1 1 2 1 1 1 2 1 1( ) ( ) (1 ( ) ( ) ) ( ( ) ),e k k e k k k i k k i k k k k i k kW B d W B d m d B m d B m d m d B m                 

 

where, km  is the number of edges of kB . Therefore, 

0 1
( 1)( ) ( )

2
k k

e k e k

m m
W B W B

   and 4 2( ) ( )e k e k kW B W B m  . 

 

Proof: Suppose that kB  is a generalized Bethe tree with k  levels, 

then a subtree 1k jB   of kB  corresponding to j th level, is a tree with its root at 

level j . Now, we can define kB  by the rooted product of trees. Let iB  be 

a subtree corresponding to 1k i  -th level of kB ; in this case, iB  will be 

defined as 

1 1 1 1 1 1( , , ,..., )
k ii d i i iB S P B B B
       

 

where, 1dS   is a star on the 1d   vertices. Accordingly, kB  will be defined as 
 

1 1 1 1 1( , , ,..., )
kk d k k kB S P B B B     
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The number of edges of kB  is obtained by 
 

1 1 2...k k k k k km d d d d d d     
 

Also we have 
 

1 1 1 1 2 1 2
( )

( ) ( , ) 2 ... ( 1) ...
k

i k k k k k k k k
e E B

d B d e i d d d d d k d d d   


       

2 2 1 1 2
( )

( ) ( , ) 2 ... ...
k

i k k k k k k
e E B

d B d e i d d d kd d d 


      

 

where, i is the root of kB . 

Therefore, by Proposition 1, we have: 
 

1 1 1 1 1( ) ( ( , , ,..., ))
kel k el d k k kW B W S P B B B     

 

1 1 1

1 1 1 1 1
2 2 2

( ) ( ) ( ) ( )
k k k

k k

d d d

el k el d k li k k li d
i i i

W B W S d d B m d S
  

    
  

     
 

1 1 1 1
2

1 1 1 1 2
2 2, 2 2,

1( ) ( , ), 1, 2,
2

k k k kd d d d

k li k k H
i j j i i j j i

m d B m d i i l
   

  
     

     
 

 

where, 1i and 2i  are the roots of two  1kB   in the level 2. We have 

1 1 2( , ) 2
dk
Sd i i


   and  2

1 1 2 1( ) 0; ( )
k ke d e d kW S W S d   . Also by Lemma 2, we 

have 1 1 2 1( ) 0; ( ) .
k ki d i d kd S d S d    Therefore, the results are obtained.  

 

Definition 2 (Dendrimer Graph). A highly branched tree, ,k dT , is 

called a regular dendrimer graph, for 0k  and 3d  , in particular, ,k dT  stands 

for the kth regular dendrimer graph of degree d  [8,13]. Dendrimer graph is 
a kind of generalized Bethe tree for any 3d  . 0,dT

 
is the one-vertex graph 

and 1,dT  is the star with 1d  vertices. Then for 2,3,...k   and 3d   the tree 

is obtained by attaching 1d   new vertices of degree one to the vertices of 
degree one of 1,k dT  . Figure 2 presents the first four regular dendrimer graphs 

of degree four. An auxiliary tree ,k dB  is introduced below. 

Each of the d  branches attached to the central vertex of ,k dT  is 

isomorphic to 1,k dB  . It is immediately seen that 0,dB  is the one-vertex graph 
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and 1,dB is the star with d vertices. Further, for 2,3,...k  and 3d  , the tree 

,k dB , is obtained by attaching 1d   new  vertices  of degree one to the vertices 

of degree one of 1,k dB  . The tree of the type 3,4B  is given in Figure 3. 
 

Proposition 3. Let ,k dT  be a dendrimer graph for which 0k  and 

3d  , then we have 
 

2 2 2
1 , 1 , 1 , , 1 , , , 1 , ,( ) ( ) ( ( ) ( ) ) ( ( ) ),e k d e k d i k d k d i k d k d k d i k d k dW T dW B d d B m d B m d m d B m       

 
2 2 2

2 , 2 , , 2 , , 2 , , , 2 , ,( ) ( ) (1 ( ) ( ) ) ( ( ) ),e k d e k d k d i k d k d i k d k d k d i k d k dW T dW B d m d B m d B m d m d B m         

 

Therefore,  
 

0 , 1 ,
( 1)( ) ( )

2e k d e k d

m m
W T W T

   and 4 , 2 ,( ) ( )e k d e k dW T W T m   

 

where m  is the number of edges of ,k dT . 
 

 
 

Figure 2. Example of regular dendrimer graphs 
 

 
Figure 3. Tree of the type 3,4B  
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Proof. The number of edges of ,k dT   is obtained as: 
 

2 1
,| ( ) | ( 1) ( 1) ... ( 1)kk dm E T d d d d d d d           

 

Also the number of edges of ,k dB  is obtained as: 
 

2
, ,| ( ) | ( 1) ( 1) ... ( 1)kk d k dm E B d d d         

 

Now we can define ,k dB  and ,k dT  by the rooted product of trees 

similar to Proposition 2 
 

, 1 1, 1, 1,( , , ,..., )k d d k d k d k dB S P B B B    

, 1 1 , , ,( , , ,..., )k d d k d k d k dT S P B B B  
 

Also, we have 
 

2 3
1 1

( )
( ) ( , ) ( 1) 2( 1) ... ( 1)( 1)

k

k
i k

e E B

d B d e i d d k d


         , 

2
2 2

( )
( ) ( , ) ( 1) 2( 1) ... ( 1)

k

k
i k

e E B

d B d e i d d k d


        .   

 

where i  is the root of ,k dB . Then the result is obtained by Proposition 2. 

As examples, we calculated the first and second type of edge-Wiener 
index of 3,4T . The results are listed in Tables 1 and 2. 

 
Table 1. Edge-Wiener index of ,4kT . 

 

k  1 2 3 

,4km  3 12 39 

1 ,4( )i kd B  0 9 63 

2 ,4( )i kd B  3 21 102 

1 ,4( )e kW B  54 1755 29700 

1 ,4( )e kW B  171 3195 43857 
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Table 2. Edge-Wiener index of 3,4T . 
 

3,4| ( ) |m E T  52 

1 3,4( )eW T  167544 

0 3,4( )eW T  168870 

2 3,4( )eW T  243688 

4 3,4( )eW T  243636 
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