THE EDGE WIENER INDEX OF ROOTED PRODUCT OF GRAPHS

ESMAEIL BABAEI¹, ALI IRANMANESH^{1, *}

ABSTRACT. In a connected graph *G*, the sum of distances between all its vertex pairs is known as the Wiener index. The edge-Wiener index is conceived in an analogous manner as the sum of distances between all pairs of edges of the connected graph. In this paper, we compute the edge-Wiener index of the rooted product of graphs and some types of dendrimers.

Keywords: graph, distance sum, edge-Wiener index

INTRODUCTION

Let G be a connected graph with the vertex and edge sets V(G) and E(G), respectively. Throughout this paper, we suppose that G is connected. The Wiener index is defined as $W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v \mid G)$, where $d(u,v \mid G)$ denotes the distance between vertices u and v.

This index was introduced by the chemist Harold Wiener [1] within the study of relations between the structure of organic compounds and their thermodynamic properties. It found many applications in chemistry, pharmaceutics

etc [2- 9].

The edge-Wiener index version was defined in ref [10] as $W_{ei}(G) = \sum_{\{e,f\} \subseteq E(G)} d_i(e,f \mid G), 0 \le i \le 4$. For i=0, $d_0(e,f \mid G) = d(e,f \mid L(G))$,

where, L(G) is the line graph of G, i.e. a graph of which vertices are the edges of G, with two vertices connected in L(G) whenever the corresponding edges of G are adjacent.

Also
$$d_3(e, f \mid G) = \begin{cases} d_1(e, f \mid G) & e \neq f \\ 0 & e = f \end{cases}$$

where $d_1(e, f | G) = \min\{d(x, u), d(x, v), d(y, u), d(y, v)\}$, such that e = xy

and
$$f=uv$$
 . Similarly, $d_4(e,f\mid G)=\begin{cases} d_2(e,f\mid G) & e\neq f\\ 0 & e=f \end{cases}$,

¹ Department of Mathematics, Tarbiat Modares University, P.O. Box: 14115-137, Tehran, Iran

^{*} iranmanesh@modares.ac.ir

where, $d_2(e, f \mid G) = \max\{d(x, u), d(x, v), d(y, u), d(y, v)\}$, such that e = xy and f = uv. Next, d_1, d_2 are not distances and $d_0(e, f \mid G) = d_3(e, f \mid G)$ for all $\{e, f\} \subseteq E(G)$ [10]. Thus for the first edge-Wiener index we have

$$W_{e0}(G) = W_{e3}(G) = \sum_{\{e,f\}\subseteq E(G)} d_0(e,f\mid G) = \sum_{\{e,f\}\subseteq E(G)} d_3(e,f\mid G).$$

And for the second edge-Wiener index: $W_{e4}(G) = \sum_{\{e,f\}\subseteq E(G)} d_4(e,f\mid G)$.

The rooted product of graph G and rooted graph H, GoH, is obtained by taking one copy of G and |V(G)| copies of H, and by joining the root vertex of the ith copy of H to the ith vertex of G for i=1,2,...,|V(G)|.

Let H be a labeled graph on n vertices, G be a sequence of n rooted graphs $G_1,...,G_n$, then H(G) denotes the graph obtained by identifying the root of G_i with the ith vertex of H, which is called the rooted product of H by G. Thus, $GoH = G(\underbrace{H,...,H}_{V(G)})$ [11].

In this paper, we compute the edge-Wiener index of the rooted product of graphs and also obtain this index for some dendrimers.

Computation of the edge Wiener index of rooted product of graphs

Lemma 1 [10]. Let m be the number of edges of the graph G , then $W_{e0}(G)=W_{e1}(G)+\frac{m(m-1)}{2}$ and $W_{e4}(G)=W_{e2}(G)-m$.

Now, let H be a labeled graph on n vertices and m edges, G be a sequence of n rooted graphs; $G_1,...,G_n$ such that G_i has n_i vertices and m_i edges and H(G) be the rooted product of H by G, then H(G) will have

$$M = m + \sum_{i=1}^{n} m_i$$
 edges. We define

$$d_{ki}(G_i) = \sum_{e \in E(G_i)} d_k(e, x_i)$$
 and $d_{ki}(H) = \sum_{e \in E(H)} d_k(e, x_i), k = 1, 2,$

where x_i is the root of G_i , also we define

$$d_1(e,x) = \min\{d(x,u),d(x,v)\}, d_2(e,x) = \max\{d(x,u),d(x,v)\}$$
 such that $x \in V(G)$, $u \in E(G)$ and $e = uv$.

Proposition 1. Let H be a labeled graph on n vertices and m edges, G be a sequence of n rooted graphs: $G_1,...,G_n$ such that G_i has n_i vertices and m_i edges. Let H(G) be the rooted product of H by G, then

$$W_{ek}(H(G)) = \sum_{i=1}^{n} W_{ek}(G_i) + W_{ek}(H) + m \sum_{i=1}^{n} d_{ki}(G_i) + \sum_{i=1}^{n} m_i d_{ki}(H)$$
$$+ \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} m_j d_{ki}(H) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} m_i m_j d_H(x_i, x_j), k = 1, 2$$

Proof. Let e_{λ} ; $\lambda=1,...,m_i$, be an edge of G_i , e_{γ} ; $\gamma=1,...,m_j$ be an edge of G_i , $i\neq j$, then,

$$d_k(e_{\lambda}, e_{\gamma}) = d_k(e_{\lambda}, x_i) + d_H(x_i, x_j) + d_k(e_{\gamma}, x_j), k = 1, 2.$$

Hence

$$d_{k}(e_{\lambda},G_{j}) = \sum_{\gamma=1}^{m_{j}} d_{k}(e_{\lambda},e_{\gamma}) = \sum_{\gamma=1}^{m_{j}} [d_{k}(e_{\lambda},x_{i}) + d_{H}(x_{i},x_{j}) + d_{k}(e_{\gamma},x_{j})]$$

$$= m_{j}d_{k}(e_{\lambda},x_{i}) + m_{j}d_{H}(x_{i},x_{j}) + d_{kj}(G_{j}),$$

$$d_{k}(G_{i},G_{j}) = \sum_{\lambda=1}^{m_{i}} d_{k}(e_{\lambda},G_{j}) = \sum_{\lambda=1}^{m_{i}} [m_{j}d_{k}(e_{\lambda},x_{i}) + m_{j}d_{H}(x_{i},x_{j}) + d_{kj}(G_{j})]$$

$$= m_{j}d_{ki}(G_{i}) + m_{i}m_{j}d_{H}(x_{i},x_{j}) + m_{i}d_{kj}(G_{j}),$$

$$\sum_{j=1, j \neq i}^{n} d_{k}(G_{i}, G_{j}) = \sum_{j=1, j \neq i}^{n} [m_{j}d_{ki}(G_{i}) + m_{i}m_{j}d_{H}(x_{i}, x_{j}) + m_{i}d_{kj}(G_{j})],$$

$$\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} d_{k} (G_{i}, G_{j}) = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} [m_{j} d_{ki} (G_{i}) + m_{i} m_{j} d_{H} (x_{i}, x_{j}) + m_{i} d_{kj} (G_{j})]$$

$$= 2 \sum_{i=1}^{n} \sum_{j=1, i \neq i}^{n} m_{j} d_{ki} (G_{i}) + \sum_{i=1}^{n} \sum_{j=1, i \neq i}^{n} m_{i} m_{j} d_{H} (x_{i}, x_{j})$$

Now, let e be an edge of H, then,

$$d_{k}(e,G_{j}) = \sum_{\gamma=1}^{m_{j}} d_{k}(e,e_{\gamma}) = \sum_{\gamma=1}^{m_{j}} [d_{k}(e,x_{j}) + d_{k}(x_{j},e_{\gamma})] = m_{j}d_{k}(e,x_{j}) + d_{kj}(G_{j})$$

$$d_{k}(H,G_{j}) = \sum_{i=1}^{m} d_{k}(e_{i},G_{j}) = \sum_{i=1}^{m} [m_{j}d_{k}(e_{i},x_{j}) + d_{kj}(G_{j})] = m_{j}d_{kj}(H) + md_{kj}(G_{j})$$

$$\sum_{i=1}^{m} d_{k}(H,G_{j}) = \sum_{i=1}^{m} [m_{j}d_{kj}(H) + md_{kj}(G_{j})] = \sum_{i=1}^{m} m_{j}d_{kj}(H) + m\sum_{i=1}^{m} d_{kj}(G_{j})$$

Therefore,

$$\begin{split} W_{ek}(H(G)) &= \sum_{\{e,f\}\subseteq E(H(G))} d_k(e,f \mid H(G)) \\ &= \sum_{i=1}^n \sum_{\{e,f\}\subseteq E(G_i)} d_k(e,f \mid G_i) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1,j\neq i}^n d_k(G_i,G_j) \\ &+ \sum_{i=1}^n d_k(H,G_i) + \sum_{\{e,f\}\subseteq E(H)} d_k(e,f \mid H) \end{split}$$

Thus,

$$W_{ek}(H(G)) = \sum_{i=1}^{n} W_{ek}(G_i) + W_{ek}(H) + m \sum_{i=1}^{n} d_{ki}(G_i) + \sum_{i=1}^{n} m_i d_{ki}(H)$$
$$+ \sum_{i=1}^{n} \sum_{j=1}^{n} m_j d_{ki}(H) + \frac{1}{2} \sum_{j=1}^{n} \sum_{j=1}^{n} m_i m_j d_H(x_i, x_j), k = 1, 2.$$

Corollary 1. By the above assumption, we have

$$W_{e0}(H(G)) = W_{e1}(H(G)) + \frac{M(M-1)}{2}$$

and
$$W_{e4}(G) = W_{e2}(H(G)) - M$$
.

where
$$M = m + \sum_{i=1}^{n} m_i$$
.

Proof. This follows from Lemma 1.

Corollary 2. Let G be a connected graph with n_1 vertices and m_1 edges, H be a rooted graph with n_2 vertices and m_1 edges, then,

$$W_{ek}(GoH) = n_1 W_{ek}(H) + W_{ek}(G) + m_1 n_1^2 d_{k1}(H) + m_2 \sum_{j=1}^{n_1} d_{kj}(G) + \frac{1}{2} \sum_{i=1}^{n_1} \sum_{j=1, j \neq i}^{n_1} m_2^2 d_G(i, j), k = 1, 2.$$

Proof. Hence, $GoH = G(\underbrace{H,...,H}_{n_1})$. Therefore, the result follows from proposition 1.

Lemma 2. Let K_n, P_n, C_n and S_n denote the complete graph, path, cycle and star on n vertices, respectively. Also let $K_{a,b}$ be the complete bipartite graph on the parts A and B of the sizes |A| = a and |B| = b. Put $d_{ki}(G) = \sum_{e \in E(H)} d_k(e,i), k = 1,2$. where i is ith vertex of G. Then,

(i)
$$d_{1i}(K_{a,b}) = \begin{cases} ab - b & i \in A \\ ab - a & i \in B \end{cases}$$
, $d_{2i}(K_{a,b}) = \begin{cases} 2ab - b & i \in A \\ 2ab - a & i \in B \end{cases}$, (ii) $d_{1i}(S_n) = d_{1i}(K_{1,n-1}) = \begin{cases} 0 & i \in A \\ n-2 & i \in B \end{cases}$, (iii) $d_{2i}(S_n) = d_{2i}(K_{1,n-1}) = \begin{cases} n-1 & i \in A \\ 2n-3 & i \in B \end{cases}$, (iv) $d_{1i}(K_n) = \frac{(n-1)(n-2)}{2}$, $d_{2i}(K_n) = (n-1)^2$

(v) $d_{1i}(C_n) = \begin{cases} \sum_{j=1}^{k-1} 2j & n = 2k \\ \sum_{j=1}^{k-1} 2j + k & n = 2k+1 \end{cases}$, $\sum_{j=1}^{k-1} 2j + k + 1 & n = 2k+1$

(vi) $d_{2i}(C_n) = \begin{cases} \sum_{j=1}^{k-1} 2j & n = 2k \\ \sum_{j=1}^{k-1} 2j + k + 1 & n = 2k+1 \end{cases}$

Proof. Straight forward.

Computation of the edge Wiener index of some dendrimers

Definition 1 (Generalized Bethe Tree). Let B_k be a generalized Bethe tree of k levels (k>1) or a rooted tree in which vertices at the same level/generation have the same degree [12]. For j=1,2,...,k, denote by d_{k-j+1} and

 n_{k-j+1} , the degree of the vertices at the level j and their numbers, respectively. Thus, $d_1=1$ is the degree of the vertices at the level k and d_k is the degree of the rooted vertex. On the other hand, $n_k=1$, pertaining to the single vertex at the first level, the root vertex. For example, B_4 is given in Figure 1.

Proposition 2. Let B_{ν} be a generalized Bethe tree. Then we have

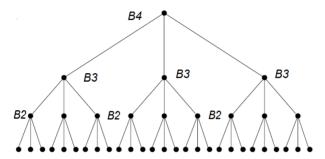


Figure 1. Generalaized Beth tree of 4 levels

$$W_{e1}(B_k) = d_k W_{e1}(B_{k-1}) + d_k^2 (d_{1i}(B_{k-1}) + m_{k-1} d_{1i}(B_{k-1}) + m_{k-1}^2) - d_k (m_{k-1} d_{1i}(B_{k-1}) + m_{k-1}^2),$$

$$W_{e2}(B_k) = d_k W_{e2}(B_{k-1}) + d_k^2 (1 + m_{k-1} + d_{2i}(B_{k-1}) + m_{k-1} d_{2i}(B_{k-1}) + m_{k-1}^2) - d_k (m_{k-1} d_{2i}(B_{k-1}) + m_{k-1}^2),$$

where, m_k is the number of edges of B_k . Therefore,

$$W_{e0}(B_k) = W_{e1}(B_k) + \frac{m_k(m_k - 1)}{2}$$
 and $W_{e4}(B_k) = W_{e2}(B_k) - m_k$.

Proof: Suppose that B_k is a generalized Bethe tree with k levels, then a subtree B_{k-j+1} of B_k corresponding to j th level, is a tree with its root at level j. Now, we can define B_k by the rooted product of trees. Let B_i be a subtree corresponding to k-i+1-th level of B_k ; in this case, B_i will be defined as

$$B_{i} = S_{d_{k-i+1}+1}(P_{1}, B_{i-1}, B_{i-1}, ..., B_{i-1})$$

where, S_{d+1} is a star on the d+1 vertices. Accordingly, B_k will be defined as

$$B_k = S_{d_k+1}(P_1, B_{k-1}, B_{k-1}, ..., B_{k-1})$$

The number of edges of B_k is obtained by

$$m_k = d_k + d_k d_{k-1} + d_k d_{k-1} ... d_2$$

Also we have

$$d_{1i}(B_k) = \sum_{e \in E(B_k)} d_1(e,i) = d_k d_{k-1} + 2d_k d_{k-1} d_{k-2} + \dots + (k-1)d_k d_{k-1} \dots d_2$$

$$d_{2i}(B_k) = \sum_{e \in E(B_k)} d_2(e,i) = d_k + 2d_k d_{k-1} + \dots + kd_k d_{k-1} \dots d_2$$

where, i is the root of B_{ν} .

Therefore, by Proposition 1, we have:

$$\begin{split} W_{el}(B_k) = & W_{el}(S_{d_k+1}(P_1, B_{k-1}, B_{k-1}, ..., B_{k-1})) \\ = & \sum_{i=2}^{d_k+1} W_{el}(B_{k-1}) + W_{el}(S_{d_k+1}) + d_k \sum_{i=2}^{d_k+1} d_{li}(B_{k-1}) + \sum_{i=2}^{d_k+1} m_{k-1} d_{li}(S_{d_k+1}) \\ + & \sum_{i=2}^{d_k+1} \sum_{i=2}^{d_k+1} m_{k-1} d_{li}(B_{k-1}) + \frac{1}{2} \sum_{i=2}^{d_k+1} \sum_{i=2}^{d_k+1} m_{k-1}^{2} d_{H}(i_1, i_2), l = 1, 2, \end{split}$$

where, i_1 and i_2 are the roots of two B_{k-1} in the level 2. We have $d_{S_{d_k+1}}(i_1,i_2)=2$ and $W_{e1}(S_{d_k+1})=0;$ $W_{e2}(S_{d_k+1})=d_k^2$. Also by Lemma 2, we have $d_{1i}(S_{d_k+1})=0;$ $d_{2i}(S_{d_k+1})=d_k$. Therefore, the results are obtained.

Definition 2 (Dendrimer Graph). A highly branched tree, $T_{k,d}$, is called a regular dendrimer graph, for $k \geq 0$ and $d \geq 3$, in particular, $T_{k,d}$ stands for the \mathbf{k}^{th} regular dendrimer graph of degree d [8,13]. Dendrimer graph is a kind of generalized Bethe tree for any $d \geq 3$. $T_{0,d}$ is the one-vertex graph and $T_{1,d}$ is the star with d+1 vertices. Then for $k=2,3,\ldots$ and $d \geq 3$ the tree is obtained by attaching d-1 new vertices of degree one to the vertices of degree one of $T_{k-1,d}$. Figure 2 presents the first four regular dendrimer graphs of degree four. An auxiliary tree $B_{k,d}$ is introduced below.

Each of the d branches attached to the central vertex of $T_{k,d}$ is isomorphic to $B_{k-1,d}$. It is immediately seen that $B_{0,d}$ is the one-vertex graph

ESMAEIL BABAEI, ALI IRANMANESH

and $B_{1,d}$ is the star with d vertices. Further, for k=2,3,... and $d\geq 3$, the tree $B_{k,d}$, is obtained by attaching d-1 new vertices of degree one to the vertices of degree one of $B_{k-1,d}$. The tree of the type $B_{3,4}$ is given in Figure 3.

Proposition 3. Let $T_{k,d}$ be a dendrimer graph for which $k \geq 0$ and $d \geq 3$, then we have

$$\begin{split} W_{e1}(T_{k,d}) &= dW_{e1}(B_{k,d}) + d^2(d_{1i}(B_{k,d}) + m_{k,d}d_{1i}(B_{k,d}) + m_{k,d}^2) - d(m_{k,d}d_{1i}(B_{k,d}) + m_{k,d}^2), \\ W_{e2}(T_{k,d}) &= dW_{e2}(B_{k,d}) + d^2(1 + m_{k,d} + d_{2i}(B_{k,d}) + m_{k,d}d_{2i}(B_{k,d}) + m_{k,d}^2) - d(m_{k,d}d_{2i}(B_{k,d}) + m_{k,d}^2), \\ \text{Therefore,} \end{split}$$

$$W_{e0}(T_{k,d}) = W_{e1}(T_{k,d}) + \frac{m(m-1)}{2}$$
 and $W_{e4}(T_{k,d}) = W_{e2}(T_{k,d}) - m$

where m is the number of edges of $T_{k,d}$.

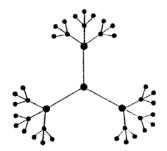


Figure 2. Example of regular dendrimer graphs

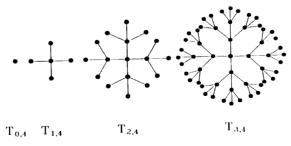


Figure 3. Tree of the type $B_{3,4}$

Proof. The number of edges of $T_{k,d}$ is obtained as:

$$m = |E(T_{kd})| = d + d(d-1) + d(d-1)^2 + ... + d(d-1)^{k-1}$$

Also the number of edges of $B_{k,d}$ is obtained as:

$$m_{k,d} = |E(B_{k,d})| = (d-1) + (d-1)^2 + ... + (d-1)^k$$

Now we can define $B_{{\scriptscriptstyle k},{\scriptscriptstyle d}}$ and $T_{{\scriptscriptstyle k},{\scriptscriptstyle d}}$ by the rooted product of trees similar to Proposition 2

$$B_{k,d} = S_d(P_1, B_{k-1,d}, B_{k-1,d}, ..., B_{k-1,d})$$

$$T_{k,d} = S_{d+1}(P_1, B_{k,d}, B_{k,d}, ..., B_{k,d})$$

Also, we have

$$d_{1i}(B_k) = \sum_{e \in E(B_k)} d_1(e,i) = (d-1)^2 + 2(d-1)^3 + \dots + (k-1)(d-1)^k,$$

$$d_{2i}(B_k) = \sum_{e \in E(B_k)} d_2(e,i) = (d-1) + 2(d-1)^2 + \dots + k(d-1)^k.$$

where i is the root of $B_{k d}$. Then the result is obtained by Proposition 2.

As examples, we calculated the first and second type of edge-Wiener index of $T_{3,4}$. The results are listed in Tables 1 and 2.

k	1	2	3
$m_{k,4}$	3	12	39
$d_{1i}\left(B_{k,4}\right)$	0	9	63
$d_{2i}(B_{k,4})$	3	21	102
$W_{e1}(B_{k,4})$	54	1755	29700
$W_{e1}(B_{k,4})$	171	3195	43857

Table 1. Edge-Wiener index of $T_{k,a}$.

ESMAEIL BABAEI, ALI IRANMANESH

Table 2. Edge-Wiener index of $T_{3,4}$.

$m = \mid E(T_{3,4}) \mid$	52
$W_{e1}(T_{3,4})$	167544
$W_{e0}(T_{3,4})$	168870
$W_{e2}(T_{3,4})$	243688
$W_{e4}(T_{3,4})$	243636

ACKNOWLEDGEMENTS

The authors would like to thank the referee for his careful reading and useful suggestions.

REFERENCES

- [1] H. Wiener, J. Am. Chem. Soc., 1947, 69, 17.
- [2] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, CA, 1990.
- [3] F. Buckley, Congr. Number, 1981, 32, 153.
- [4] A.A. Dobrynin, R. Entringer, I. Gutman, Acta Apppl. Math., 2001, 66, 211.
- [5] A.A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Acta Appl. Math., 2002, 72, 247.
- [6] A.A. Dobrynin, L.S. Mel'nikov, MATCH Commun. Math. Comput. Chem., 2005, 53, 209.
- [7] I. Gutman, O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, Germany, 1986.
- [8] I. Gutman, Yeong-Nan Yeh, Shyi-Long Lee, Jiang-Cherng Chen, *MATCH Commun. Math. Comput. Chem.*, **1994**, *30*, 103.
- [9] A. Gravac, T. Pisaski, J. Math. Chem., 1991, 8, 53.
- [10] A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, *MATCH Commun. Math. Comput. Chem.*, **2009**, *61*, 663.
- [11] C.D. Godsil, B.D. Mckay, Bull. Austral. Math. Soc., 1978, 18, 21.
- [12] O. Rojo, Lin. Algebra Appl., **2007**, 420, 490.
- [13] A. Heydari, On the topological indices of graph of nanotubes, Ph.D. Thesis, Isfahan University of Technology, Isfahan, Iran, **2008**.