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ABSTRACT. Cluj and Omega polynomials were designed to describe the 
graphs associated to polyhedral nanostructures: their exponents express the 
extent of partitions of a graph property while the coefficients count the partitions 
of a given extent. Basic definitions and properties of these and some other 
related counting polynomials are given, as derived from the cutting procedure 
of their calculation. Formulas to calculate these polynomials in T(4,4)R[c,n] tori 
are given and exemplified.  
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POLYNOMIALS IN CHEMISTRY 

One of the most used representations of a molecular graph is that of 
a polynomial. In Quantum Chemistry, the early Hückel theory made use of 
the characteristic polynomial in calculating the levels of -electron energy of 
the molecular orbitals, in conjugated hydrocarbons [1-4]: 

( ) det[ ]Ch x x I A           (1) 

In the above, I is the unit matrix of a pertinent order and A the 
adjacency matrix of the graph G. The characteristic polynomial is involved 
in the evaluation of topological resonance energy TRE, the topological effect 
on molecular orbitals TEMO, the aromatic sextet theory, the Kekulé structure 
count, etc. [4-8]   

A general form of a counting polynomial is the following: 

( , ) ( ) k
k

P x m k x M             (2) 

where the exponents represent the extent of partitions p(G), )()( GPGp   of 

a graph property P(G) while the coefficients ( )m k  are related to the number of 
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partitions of extent k. In relation (2), the coefficients ( )m k are calculable from the 
graph G by a method making use of the Sachs graphs, which are subgraphs of 
G. Some numeric methods of linear algebra, can eventually be more efficient 
in large graphs [9,10].  More about the characteristic polynomial, the reader 
can find in ref [1].  

In the Mathematical Chemistry literature, the counting polynomials have 
been introduced by Hosoya [11,12] and later by other scientists [12,21].  

 
POLYNOMIALS OF VERTEX PROXIMITY 

Cluj polynomials are defined [22-25] on the basis of vertex proximities pi,  

( , ) ( ) k
k

P x m k x UCJ     (3) 

where summation runs over all }{pk   in G with p being the proximity of the 

vertex i with respect to any vertex j in G, joined to i by an edge {pe,i} (the Cluj-
edge polynomials) or by a path {pp,i}  (the Cluj-path polynomials), taken as 
the shortest (i.e., distance DI) or the longest (i.e., detour DE) paths.  

In (3), the coefficients m(k) can be calculated from the entries in the 
non-symmetric Cluj matrices (as provided by the TOPOCLUJ software 
program) [26] which represent vertex proximities. To define these, we need 
some theoretical background, as follows.  

A graph G is a partial cube if it is embeddable in the n-cube nQ , which 

is the regular graph whose vertices are all binary strings of length n, two strings 
being adjacent if they differ in exactly one position [27]. The distance 
function in the n-cube is the Hamming distance. A hypercube can also be 

expressed as the Cartesian product: 1 2
n

n iQ K . A subgraph H G  is called 

isometric, if ),(),( vudvud GH  , for any ( , )u v H ; it is convex if any shortest 
path in G between vertices of H belongs to H. 

For any edge e=(u,v) of a connected graph G let nuv denote the  
set of vertices lying closer to u than to v:  ( ) | ( , ) ( , )uvn w V G d w u d w v   . 

It follows that  ( ) | ( , ) ( , ) 1uvn w V G d w v d w u    . The sets (and 

subgraphs) induced by these vertices, nuv and nvu, are called semicubes of G; 
the semicubes are called opposite semicubes and are disjoint [28]. 

A graph G is bipartite if and only if, for any edge of G, the opposite 
semicubes define a partition of G: ( )uv vun n v V G   . These semicubes 

are just the vertex proximities of (the endpoints of) edge e=(u,v), which CJ 
polynomial counts. In partial cubes, the semicubes can be estimated by an 
orthogonal edge-cutting procedure.  
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The orthogonal cuts form a partition of the edges in G:  

1 2( ) ... , ,k i jE G c c c c c i j        . 

To perform an orthogonal edge-cutting [25,29-32] take a straight 
line segment, orthogonal to the edge e, and intersect e and all its parallel 
edges (in a polygonal plane graph). The set of these intersections is called 
an orthogonal cut ck, k=1,2,..,kmax of G, with respect to the edge e (Figure 1). 
To any orthogonal cut ck, two numbers are associated: first one represents 
the number of edges ek “cut-off”, or the cutting cardinality | ck | while the 
second (in round brackets, in Figure 1) is vk or the number of points lying to 
the left hand with respect to ck. 

Cluj and some related polynomials are calculable from the semicubes 
in G (see the polynomial exponents, Figure 1), they differing only in the 
mathematical operation used in composing the edge contributions to the 
global graph property. Because, in a bipartite graph, the opposite semicubes 
define a partition of vertices, it is easily to identify the two semicubes: nuv = vk 
and nvu= v-vk or vice-versa.  

 

 
 
 
 

 

CJ S(x)  = 2·2·4(x4+x12)+ 2·1·4(x8+x8) 
              = 16x4+16x8+16x12 
CJ S’(1) = 384;  
    PIv(x) = 2·2·4(x4+12)+ 2·1·4(x8+8) 
              =16x16 +8x16 = 24x16;   
   PIv’(1) = 384; 
 
CJ P(x)  = 2·2·4(x4·12)+ ·1·4(x8·8) 
              = 16x48+ 8x64 =SZ(x) 
CJ P’(1) = 1280=SZ’(1); 
 
    ( )x = (2·3)x4  

      (1) =24=e=|E(G)| 

    ( ) 480CI G  ; 

    ( )x = 4(2·3)x4  

    (1) 96  ; 

    ( )x = 4(2·3)x20 

    (1) =480=PI’(1) 

Figure 1. Calculating of several topological descriptors by the Cutting procedure 
 

The coefficients of these descriptors are calculated (with some 
exceptions) as the product of three numbers (in the front of brackets - right 
hand part of Figure 1) with the meaning: (i) symmetry of G; (ii) occurrence 
of ck (in the whole structure) and (iii) ek.  
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According to the mathematical operation used in composing the 
graph semicubes, four polynomials can be defined: 

(i) Summation, and the polynomial is called Cluj-Sum, by Diudea et al. 
[22-25,31-33] (and symbolized CJeS): 

 ( ) v v vk k
e eCJ S x x x       (4) 

 (ii) Pair-wise summation, with the polynomial called (vertex) Padmakar-
Ivan [34] by Ashrafi [35-38] (and symbolized PIv): 

( )( ) v v vk k
v ePI x x        (5) 

 (iii) Pair-wise product, while the polynomial is called Cluj-Product (and 
symbolized CJeP) [25,31,39-43] or also Szeged polynomial (and symbolyzed 
SZ) [36-38]: 

( )( ) ( ) v v vk k
e eCJ P x SZ x x      (6) 

The first derivative (in x=1) of a (graph) counting polynomial provides 
single numbers, often called topological indices.  

It is not difficult to see that the first derivative (in x=1) of the first two 
polynomials gives one and the same value; however, their second derivative is 
different and the following relations hold in any graph [24]: 

(1) (1)e vCJ S PI   ; (1) (1)e vCJ S PI     (7) 

The number of terms is given by the value of the polynomial in x=1: it is 
CJeS(1)=2e and PIv(1)=e, respectively, because in the last case the two endpoint 
contributions are pair-wise summed for any edge in a bipartite graph.  

Observe the first derivative (in x=1) of PIv(x) takes the maximal value in 
bipartite graphs: 

 (1) | ( ) | | ( ) |vPI e v E G V G        (8) 

It can also be seen by considering the definition of the corresponding index [44]: 

, , ,( ) (1)v v u v v u u v
e uv e uv

PI G PI n n V E m
 

      
  (9) 

where nu,v, nv,u count the non-equidistant vertices with respect to the endpoints 
of the edge e=(u,v) while m(u,v) is the number of equidistant vertices vs. u and 
v.  However, it is known that, in bipartite graphs, there are no equidistant vertices 
vs. any edge, so that the last term in (9) is null. The value of PIv(G) is thus 
maximal in bipartite graphs, among all graphs on the same number of vertices; 
the result of (8) can be used as a criterion for checking the “bipatity” of a graph. 

The third polynomial uses the pair-wise product; notice that Cluj-
Product CJeP(x) is precisely the (vertex) Szeged polynomial SZv(x), defined by 
Ashrafi et al. [36-38].This comes out from the relations between the basic Cluj 
(Diudea [39-41,45,46]) and Szeged (Gutman [46,47]) indices:  
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(1) ( ) ( ) (1)e e vCJ P CJ DI G SZ G SZ         (10) 

These polynomials (and their derived indices) do not count the equidistant 
vertices, an idea introduced in Chemical Graph Theory by Gutman [47]. When 
subscript letter is missing, SZ(x) is SZv(x). 

 

POLYNOMIALS OF VERTEX PROXIMITY IN RHOMB-TILED TORI 

The covering (4,4)S, embedded in the torus, can be changed to the 
rhombic (4,4)R pattern by the Medial Med operation on maps [48]. 

(T(4,4)S[ , ]) (T(4,4)R[2 , ])Med c n c n   (11) 

Since the Med operation will double the number of points in the 
original object (i.e., the vertex multiplicity m =2), it is clear that these graphs 
are bipartite.  

The cutting procedure can be applied in case of rhomb-tiled tori 
T(4,4)R[c,n]; each cutting provides halves, as illustrated in Figure 2. Table 1 
includes both formulas and pertinent examples in this series.  
 

  
 

Figure 2. Cutting procedure in rhomb-tiled tori T(4,4)R[c,n];  
the two halves are red/blue colored. 

 
The rhomb-tiled tori are not partial cubes, then the cutting procedure 

cannot be applied in calculating the Wiener index W(G) [30]. 

 

POLYNOMIALS OF EDGE PROXIMITY 

Let G=(V(G),E(G)) be a connected graph, with the vertex set V(G) and 
edge set E(G). Two edges e = (u,v) and f = (x,y) of G are called co-distant 
(briefly: e co f ) if the notation can be selected such that [28,49]:  

( , ) ( , ) 1 ( , ) 1 ( , )e co f d v x d v y d u x d u y                 (12) 

where d is the usual shortest-path distance function. Relation co is reflexive, 
that is, e co e holds for any edge e of G and it is also symmetric: if e co f  then 
also f co e. In general, co is not transitive. A graph is called a co-graph if the 
relation co is transitive and thus an equivalence relation. 
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Table 1. Polynomials of vertex proximity in tori T(4,4)R[c,n] 
designed by Med(T(4,4)S[c,n]); vertex multiplicity m=2. 

 

Formulas 
/2 /2( ) ( )v vCJS x e x x   

2(1) ( / 2 / 2) 2( )CJS e v v e v cn       
/2 /2( ) ( )v v v

vPI x e x e x    

(1) (1)v ePI e v CJ S     

/2 /2( ) ( ) ( )v vCJP x SZ x e x    
2

3 3

(1) ( / 2 / 2) ( / 2)

(1/ 2) (1/ 2)( )

CJP e v v e v
v cn

   
 

 

v cn ;  2 2e c n   

Examples 

Med(T(4,4)S[5,10]): CJS(x)=400x50;  P`(1)=20000; PIv(x)=200x100; P`(1)=20000 
Med(T(4,4)S[5,15]): CJS(x)=600x75;  P`(1)=45000; PIv(x)=300x150; P`(1)=45000 
Med(T(4,4)S[5,20]): CJS(x)=800x100; P`(1)=80000; PIv(x)=400x200; P`(1)=80000 
Med(T(4,4)S[5,10]): CJP(x)=200x2500; P`(1)=500000; v=100; e= 200. 
Med(T(4,4)S[5,15]): CJP(x)=300x5625; P`(1)= 1687500; v=150; e= 300. 
Med(T(4,4)S[5,20]): CJP(x)=400x10000; P`(1)= 4000000; v=200; e= 400. 

 

For an edge ( )e E G , let ( ) : { ( ); }c e f E G f co e   be the set of edges 
codistant to e in G. The set c(e) can be obtained by an orthogonal cut oc of G, 
with respect to e. If G is a co-graph then its orthogonal cuts form a partition in 
G (see above). A bipartite graph G is a co-graph if and only if it is a partial cube, 
and all its semicubes are convex. However, a co-graph can also be non-
bipartite [32] (e.g., it shows a transitive co-relation but has at least one odd 
cycle, thus being no more a partial cube). It was proven that relation co is a 
theta (Djoković [50]) and Winkler [51]) relation. 

Two edges e and f of a plane graph G are in relation opposite, e op f, if 
they are opposite edges of an inner face of G. Then e co f holds by assuming 
the faces are isometric. Note that relation co involves distances in the whole 
graph while op is defined only locally (it relates face-opposite edges). If G is a 
co-graph, then its opposite edge strips ops {sk} superimpose over the orthogonal 
cut sets ocs {ck} and |ck|=|sk|.

 

Using the relation op we can partition the edge set of G into opposite 
edge strips, ops: any two subsequent edges of an ops are in op relation and any 
three subsequent edges of such a strip belong to adjacent faces. Note that 
John et al. [49] implicitly used the “op” relation in defining the Cluj-Ilmenau 
index CI (see below). 

Let us denote by m(s) or simply m the number of ops of length s=|sk| 
and define the Omega polynomial as [52-55]: 
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( ) s
s

x m x        (13) 

The exponents count just the intersected edges by the cut-line (in a cutting 
procedure), which does not need to be orthogonal on all the edges of an ops. 

In co-graphs/partial cubes, other two related polynomials [48] can 
be calculated: 

( ) s
s

x ms x           (14) 

( ) e s
s

x ms x         (15) 

The above polynomials count codistant and non-codistant edges, 
respectively. Thus, non-co-distance is related to edge-proximity, and the name 
of these polynomials is immediate. 

The first derivative (computed at x=1) of these counting polynomials 
provide interesting topological indices [48]: 

(1) | ( ) |
s
ms e E G                 (16) 

2(1) ( )
s
ms G        (17) 

(1) ( ) ( )
s
ms e s G             (18) 

On ( )x an index, called Cluj-Ilmenau [49] CI(G), was defined 

2( ) [ (1)] [ (1) (1)]{ }CI G             (19) 

In co-graphs, there is the equality [48]: ( ) ( )CI G G . This result 
can be obtained applying the definition (19): 

 2
2 2( ) ( 1) ( )

s s s s
CI G ms ms ms s e ms G                   (20) 

Relation (20) is just the formula proposed by John et al. [56] to 
calculate the Khadikar’s PI index [34]. According to Ashrafi’s notations [57], 
PIe (to difer from PIv) can be written as:  

 
( )

( ) ( , ) ( , ) ( , )e
e E G

PI G n e u n e v m u v


          (21) 

where n(e,u) is the number of edges lying closer to the vertex u than to the 
v vertex while m(u,v) is the number of edges equidistant from u and v.

 

This index can be calculated as the first derivative, in x=1, of the 
polynomial defined by Ashrafi [57] as: 

( , ) ( , )

( )

( ) n e u n e v
e

e E G
PI x x 


 

             (22) 
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In bipartite graphs, either co-graphs or not, the equality: ( ) ( )eG PI G   

is true, but not in general graphs. In partial cubes, since they are also bipartite, 
the previous equality can be expanded to  

( ) ( ) ( )eCI G G PI G       (23)  

a relation precisely true in partial cubes but not in all co-graphs (e.g., in 
non-bipartite co-graphs). As the rhomb-tiled tori are not co-graphs, then 

( ) ( )CI G G  . 
Formulas for the above three polynomials in rhomb-tiled tori T(4,4)R[c,n] 

are given in Table 2, along with some examples.  
 

Table 2. Polynomials of Edge Proximity in tori T(4,4)R[c,n] 
designed by Med(T(4,4)S[c,n]); vertex multiplicity m=2. 

 

Formulas 

2( ) 2 nx c x    

2 2 216 8CI c n cn   
6 2 6 2( ) 2 2 c cx c n x e x        

(1) (6 2)e c     

(6 2)( ) e cx e x      

(1) [ (6 2)]e e c     

v cn ;  2 2e c n   

Examples 

T[10,30]; ( )x =20x60; CI=1368000; ( )x =1200x58; (1) = 69600;  

                                                           ( )x =1200x1142; (1) =1370400 

T[15,30]; ( )x =30x60; CI=3132000; ( )x =1800x88; (1) =158400; 

                                                           ( )x =1800x1712; (1) =3081600 

T[10,40]; ( )x =20x80; CI=2432000; ( )x =1600x58; (1) =92800; 

                                                           ( )x =1600x1542; (1) =2467200 

 
 
 
CONCLUSIONS 

Cluj and Omega polynomials can be defined on the ground of an 
orthogonal cutting procedure. Some other related counting polynomials were 
derived by the cutting procedure. Formulas to calculate these polynomials 
in T(4,4)R[c,n] tori were given and exemplified.  



CLUJ, OMEGA AND RELATED POLYNOMIALS IN TORI T(4,4)R[c,n] 
 
 

 135 

REFERENCES 
 

1. M.V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, NOVA, New York, 
2002. 

2. F. Harary, SIAM Rev., 1962, 4, 202.  

3. H. Sachs, Publ. Math. (Debrecen), 1964, 11, 119.  

4. N. Trinajstić, Chemical Graph Theory, IInd Ed. CRC Press, 1992. 

5. I. Gutman, M. Milun, N. Trinajstić, MATCH Commun. Math. Comput. Chem., 
1975, 1, 171. 

6. J. Aihara, J. Am. Chem. Soc., 1976, 98, 2750.  

7. I. Gutman, M. Milun, N. Trinajstić,  J. Am. Chem. Soc., 1977, 99, 1692.  

8. A. Tang, Y. Kiang, G. Yan, S. Tai, Graph Theoretical Molecular Orbitals; Science 
Press, Beijing, 1986. 

9. P. S. Dwyes, Linear Computations, Wiley, N.Y., 1951. 

10. D.K. Fadeev, I.S. Sominskii, Problems in Higher Algebra, Freeman, San 
Francisco, 1965. 

11. H. Hosoya, Bull. Chem. Soc. Japan, 1971, 44, 2332. 

12. H. Hosoya, Discrete Appl. Math., 1988, 19, 239. 

13. E.V. Konstantinova, M.V. Diudea, Croat. Chem. Acta, 2000, 73, 383. 

14. I. Gutman, S. Klavžar, M. Petkovšek, P. Žigert, MATCH Commun. Math. Chem., 
2001, 43, 49. 

15. H. Hosoya, T. Yamaguchi, Tetrahedron Lett., 1975, 4659.  

16. N. Ohkami, H. Hosoya, Theoret. Chim. Acta, 1983, 64, 153. 

17. N. Ohkami, A. Motoyama, T. Yamaguchi, H. Hosoya, Tetrahedron, 1981, 37, 
1113. 

18. H. Hosoya, Topics Curr. Chem., 1990, 153, 255.  

19. E. Clar, Polycyclic Hydrocarbons, Acad. Press, London, 1964. 

20. E. Clar, The Aromatic Sextet, Wiley, New York, 1972. 

21. I. Gutman, H. Hosoya, Z. Naturforsch., 1990, 45a, 645.  

22. M.V. Diudea, J. Math. Chem., 2009, 45, 295. 

23. M.V. Diudea, A.E. Vizitiu, D. Janežič, J. Chem. Inf. Model., 2007, 47, 864. 

24. M.V. Diudea, A. Ilić, M. Ghorbani, A.R. Ashrafi, Croat. Chem. Acta, 2010, 83, 
283. 

25. M.V. Diudea, N. Dorosti, A. Iranmanesh, Studia UBB Chemia, 2010, 55 (4), 247. 

26. O. Ursu, M.V. Diudea, TOPOCLUJ software program, Babes-Bolyai University, 
Cluj, 2005. 

27. F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969. 

28. M.V. Diudea, S. Klavžar, Acta Chem. Sloven., 2010, 57, 565. 



FARZANEH GHOLAMI-NEZHAAD, BEATA SZEFLER, MONICA STEFU 
 
 

 136 

29. I. Gutman, S. Klavžar, J. Chem. Inf. Comput. Sci., 1995, 35, 1011. 

30. S. Klavžar, MATCH Commun. Math. Comput. Chem., 2008, 60, 2554. 

31. M.V. Diudea, in I. Gutman, B. Furtula (Eds.), New Molecular Structure 
Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac 
Kragujevac, 2010, p. 191. 

32. M.V. Diudea, MATCH Commun. Math. Comput. Chem., 2010, 64, 569. 

33. A.E. Vizitiu, M.V. Diudea, Studia UBB Chemia, 2009, 54(1), 173. 

34. P.V. Khadikar, Nat. Acad. Sci. Lett., 2000, 23, 113. 

35. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Discrete Appl. Math., 2008, 
156, 1780. 

36. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Linear Algebra Appl., 2008, 
429, 2702. 

37. A.R. Ashrafi, M. Ghorbani, M. Jalali, J. Theor. Comput. Chem., 2008, 7, 221. 

38. T. Mansour, M. Schork, Discr. Appl. Math., 2009, 157, 1600. 

39. M.V. Diudea, J. Chem. Inf. Comput. Sci., 1997, 37, 300. 

40. M.V. Diudea, MATCH Commun. Math. Comput. Chem., 1997, 35, 169. 

41. M.V. Diudea, B. Parv, I. Gutman, J. Chem. Inf. Comput. Sci., 1997, 37, 1101. 

42. I. Gutman, M.V. Diudea, J. Serb. Chem. Soc., 1998, 63, 497. 

43. M.V. Diudea, G. Katona, I. Lukovits, N. Trinajstić, Croat. Chem. Acta, 1998, 
71, 459. 

44. A. Ilić, Appl. Math. Lett., 2010, 23(10), 1213. 

45. M.V. Diudea, Croat. Chem. Acta, 1999, 72, 835. 

46. M.V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology. NOVA, New York, 
2002. 

47. I. Gutman, Graph Theory Notes New York, 1994, 27, 9. 

48. M.V. Diudea, Nanomolecules and Nanostructures, Polynomials and Indices, 
MCM, No. 10, Univ. Kragujevac, Serbia, 2010. 

49. P.E. John, A.E. Vizitiu, S. Cigher, M.V. Diudea, MATCH Commun. Math. 
Comput. Chem., 2007, 57, 479. 

50. D.Ž. Djoković, J. Combin. Theory Ser. B, 1973, 14, 263. 

51. P.M. Winkler, Discrete Appl. Math., 1984, 8, 209. 

52. M.V. Diudea, Carpath. J. Math., 2006, 22, 43. 

53. M.V. Diudea, A. Ilić, Carpath. J. Math., 2009, 25, 177. 

54. M.V. Diudea, J. Math. Chem., 2009, 45, 309. 

55. M.V. Diudea, A.E. Vizitiu, F. Gholaminezhad, A.R. Ashrafi, MATCH Commun. 
Math. Comput. Chem., 2008, 60, 945. 

56. P.E. John, P.V. Khadikar, J.A. Singh, J. Math. Chem., 2007, 42, 37. 

57. A.R. Ashrafi, B. Manoochehrian, H. Yousefi-Azari, Util. Math., 2006, 71, 97. 


