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ABSTRACT. A generalization of degree distance of graphs we recently 
proposed as a new topological index. In this paper, the new index is studied in 
trees, in unicyclic graphs of girth k and in some special classes of bicyclic 
graphs. Lower-bound and upper-bound values and analytical formulasto 
calculate this index in the studied graphs are given. 
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INTRODUCTION 
 

A graph invariant is any function on a graph that does not depend 
on the labeling of its vertices. Topological indices TIs are graph invariants 
calculated on the graphs associated to molecules. The distance-based TIs 
have been widely used in theoretical chemistry to establish relations between 
the structure and the properties of molecules: correlations with physical, 
chemical and biological properties of chemical compounds have been reported 
[1]. In this paper, only simple graphs are considered.  

Let G  be a connected graph with vertex and edge sets )(GV  and 

)(GE , respectively, their cardinalities being n=| )(GV | andm=| )(GE |. In a 
molecular graph, the vertices represent atoms and the edges the covalent 
bonds. The distance between the vertices u  and v  of G  is denoted by 

),( vudG  ( ),( vud  for short), and represent the length of a minimum path 

connecting them. Let )(vdG  be the degree of a vertex v or the valence of a 

given atom in the hydrogen depleted molecular graph. The eccentricity, denoted 
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by )(v , is defined as the maximum distance from vertex v  to any other 

vertex in G . The diameter of a graph, ( )d G , is the maximum eccentricity 

over all vertices in G . For any vertex )(GVv , the open neighborhood of 

v  is the set )}(|)({=)( GEuvGVuvN   and the closed neighborhood of 

v  is the set }{)(=][ vvNvN  . The girth of a graph is the length of a 

shortest cycle contained in the graph. A connected graph G  with n  
vertices and m  edges is called unicyclic if nm = ; G  is called bicyclic if 

1= nm . 
The additively weighted Harary index was defined in [2] as follows: 

)).()()(,(=)( 1

)(},{
vdudvudGH GG

GVvu
A 


  

Dobrynin and Kochetova in [3] and Gutman in [4] introduced a new 
graph invariant, called the degree distance. It is defined as:  

       ).(,=
)(},{

vdudvudGD GG
GVvu

 


 

The first Zagreb index was originally defined as [5]: 
2

)(1 )(=)( udGM GGVu 
 

The first Zagreb index can also be expressed as the sum over all 
the edges of G : 

)].()([=)(
)(1 vdudGM GGGEuv

 
 

We refer the readers to [6] for the proof of this fact and for more 
information on the Zagreb index.  

The first Zagreb co-index of a graph G is defined in [7] as:  

)].()([=)(
)(

1 vdudGM GG
GEuv




 

Let ),( kGd  be the number of pairs of vertices of a graph G located 

at distance k ,   be a real number, and  


 kkGdGW
k

),(=)(
1 

 

be a Wiener-type invariant of G  associated to a real number  , see [8, 9] 
for details.  

A generalization of the degree distance, denoted by )(GH was 

proposed [10]. For every vertex u, the “degree distance sum” is defined as: 

( ) = ( ) ( )GH u D u d u
  
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where the distance sum is calculated on the distance matrix raised at power 
 :  

( )( ) = ( , )v V GD u d u v 
 . 

So we have:  

( ) ( ) { , } ( )
( ) = ( ) = ( ) ( ) = ( , )( ( ) ( ))G G G

u V G u V G u v V G

H G H u D u d u d u v d u d v 
 

  
    

where   is a real number. If 0= , then mGH 4=)( . When 1= , this new 

topological index ( )H G  equals the degree distance index (i.e. Dobrynin or 
Schultz index). The properties of the degree distance index were studied in 
[11-14]. Also, if 1=  , then ( ) = ( )AH G H G  (see above). The relation of 
our new index with other intensely studied indices motivated our present 
(and future) study. 

Throughout this paper, nC , nP , nK  and nS  denote the cycle, path, 

complete and star graphs on n  vertices, respectively. The complement of a 
graph G  is a graph H  on the same vertices such that two vertices of H  are 
adjacent if and only if they are not adjacent in G . The graph H  is usually 

denoted by G . Our other notations are standard and taken mainly from [1, 
15, 16]. 

Extremal graph theory is a branch of the mathematical field of graph 
theory. Extremal graph theory studies extremal (maximal or minimal) graphs 
which satisfy a certain property. Extremality can be taken with respect to 
different graph invariants, such as order, size or girth. The problem of 
determining extremal values and corresponding extremal graphs of some 
graph invariants is the topic of several papers [11-14, 17-26].In this paper, 
we characterize n -vertex unicyclic graphs with girth k , having minimum 
and maximum generalization degree distance and we derive the formula of 
this index for some special classes of bicyclic graphs. Furthermore, we 
determine the minimum and maximum of this index for trees. 
 
RESULTS AND DISCUSSION 

 Let us construct the graph G  as follows: Let H  and H   be two disjoint 
connected graphs such that 1|)(| HV  and 1|)(| HV . Suppose that there 

is )(HVw  such that 2)( wdH , )(HVu   and pvvwvP 21=  is a 

pendant path of length 1p  attached at w , and the edge wu  is connecting 

H  and H   (see Figure 1). Let ),,,(= HPwHG    be the graph obtained 

from the graph G  by removing the edge wu  and inserting the edge uvp . 
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We call such a transformation from G  to G  a  -transform of a graph G . 
Note that if 2=)(wdG , then G  and G  are isomorphic [27]. 

 

 
 

Figure 1.  -transform applied to G  at vertex w . 
 
Theorem 2.1. Let ),,,(= HPwHG    be a  -transform of a graph G  

and   be a positive integer. Then )()( GHGH   , and the equality is held if 

and only if 2=)(wdG . 

Proof. If 2=)(wdG , then it is obvious the isomorphism GG  , so 

assume that 2>)(wdG . The only vertices that change degree after 

performing the  -transform are w  and pv . So  

)2(1),()((=),(
)(


 pwvdwdGwH

HVv
G 



  

     ),1)),((
)(

 


vud
HVv

 

)2(1),(1)()((=),(
)(


 pwvdwdGwH

HVv
G  



  

      ),1)),((
)(

 


pvud
HVv

 

)1)(2(1)),(((=),(
)(


 



ppwvdGvH
HVv

p   

      ),1)),((
)(

 


pvud
HVv
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)1)(2(1)),((2(=),(
)(


  



ppwvdGvH
HVv

p   

       ).1)),((
)(

 


vud
HVv

 

Put )),(),(()),(),((= GvHGwHGvHGwHA pp   , so we have: 

       ppwvdpvudwdA
HVvHVv

G  


)),((1)),((2))((=
)()(

 

 ),(1)),(())((2
)()(

wvdvudwd
HVvHVv

G
 



  

 ))1)),((1)),(((2)()((=
)(

  


vudpvudwd
HVv

G  

 ),()),((
)(}{)(

wvdpppwvd
HVvwHVv

 


  

 ))1)),((1)),(((2)()((=
)(

  


vudpvudwd
HVv

G  

 )).,()),(((
}{)(

wvdpwvd
wHVv

  


 

Since   is a positive integer and 2>)(wdG , thus 0A . Let 

},,,{=)( 21 pvvvPV  , then for every vertex },,,{ 121  pvvvx  , we have 

),(=),( GxHGxH   . Now we assume }{)( wHVx  . So  


 )),(1),((),()((=),(

)()(
xwdvudvxdxdGxH

HVvHVv
G  



 

    ),)),(()),((1  xwdpxwd    


 )),(1),((),()((=),(
)()(

xwdpvudvxdxdGxH
HVvHVv

G  


 

    ).)),(()),((1  xwdpxwd    

Thus for every vertex }{)( wHVx  , ),(),( GxHGxH   . Now 

we assume )(HVx  . So  

 
 )),(1),((),()((=),(

)()(
xudvwdvxdxdGxH

HVvHVv
G  



 

    ),)),(1()),((2  xudpxud    

 
 )),(1),((),()((=),(

)()(
xudpvwdvxdxdGxH

HVvHVv
G  



 

    ).)),(()),((1  xudpxud    
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Thus for every vertex )(HVx  , we have ),(),( GxHGxH   . 

Considering the above inequality, we obtain, )()( GHGH    and the proof 

is completed.  
 

 
 

Figure 2.  -transform applied to G  at vertex v . 
 
Let v  be a vertex of degree 1p  in a graph G , which is not a star, 

such that pvvvvvv ,,, 21   are pendant edges incident with v  and u  is the 

neighbor of v  distinct from pvvv ,,, 21  . We form a graph ),(= vGG   by 

removing edges pvvvvvv ,,, 21   and adding new edges puvuvuv ,,, 21  . We 

say that G  is a  -transform of G  (see Figure 2). Note that if 1=)(udG , 

then G  and G  are isomorphic [27]. 

Theorem 2.2. Let ),(= vGG   be a  -transform of G  and   be a 

positive integer. Then )()( GHGH   , and the equality is held if and only 

if 1=)(udG . 

Proof. The only vertices that change the degree after performing 
the  -transform are u  and v . So  

 ),21),()((=),(
)(

puxdudGuH
HVx

G


 


 

 ),1),()()((=),(
)(

puxdpudGuH
HVx

G  



  

 ),1)),((1)((=),(
)(

puxdpGvH
HVx

 



  

 .21)),((=),(
)(

puxdGvH
HVx


  



 

Put   )),,(),(()),(),((= GvHGuHGvHGuHA    thus  
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puxdpupdupduxdpA
HVx

GG
HVx

 2),()()(21)),((=
)()(

 


    ).(1))((2)),(1)),(((=
)()(

updudpuxduxdp GG
HVxHVx

 


  

For every vertex },,,{=)( 21 pvvvPVx  , we have:  

 1),(212)),((=),(
)(




puxdGxH
HVx


  

 .21)),((=),(
)(

puxdGxH
HVx


  



 

Then 

.21)1)),((2)),(((=),(),(
)(


  



uxduxdGxHGxH
HVx

 

For every vertex }{)( uHVx  , we have:  

),2)),((1)),((),()((=),(
)(


 



uxdpuxdyxdxdGxH
HVy

G  

).1)),((1)),((),()((=),(
)(


  



uxdpuxdyxdxdGxH
HVy

G  

It is clear that for every vertex }{)( uHVx  , ),(),( GxHGxH   . 

If 1=)(udG , then GG  , so we assume that 2)( udG . By considering the 

above inequality, we have, )()( GHGH    and the proof is completed.   

Corollary 2.3. Let T  be a tree on 2n  vertices and   be a 
positive integer. Then ).(<)(<)( nn PHTHSH   

Proof. Let T  be a tree on n vertices. By using of Theorem 2.1, we 
easily get that )(<)( nPHTH   and by using of Theorem 2.2, we easily get 

that )(<)( THSH n  .   

 

 

Figure 3.The graphs G  and *G . 
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Let T  be a tree on 2n  vertices. Then )(<)(<)( nn PDTDSD  . In 

the following Corollary, we will find a bound for H  in bicyclic graphs. 

Corollary 2.4. Let G  and *G  be two graphs which is shown in 
Figure 3, where M  and N  are vertex disjoint cycles, T  is a tree with 3k  
vertices, }{=)()( uTVMV  , }{=)()( vTVNV  , *G  is formed from G  by 

setting the tree T  to be kP  with end vertices u  and v . Suppose that *GG   

and   is a positive integer. If 2|)(||,)(| NVMV , then )(<)( *GHGH  . 

Proof. The proof follows from Corollary 2.3.     

Lemma 2.5. Let G  be a connected graph with at least three 
vertices and   be a negative integer. 

(i) If G  is not isomorphic to nK , then )(<)( eGHGH  , where 

)(GEe , 

(ii) If G  has an edge e  not being a cut edge, then 
)(>)( eGHGH  . 

Proof. (i) Suppose that G  is not a complete graph. Then there exists 

a pair of vertices u  and v  in G  such that )(GEuv . It is obvious that 

),(),( yxdyxd uvGG   for any pair of vertices x  and y  in G . Also, we have 

),(=1>),( vudvud uvGG  . Moreover, )()( wdwd GuvG   for any w  in G . 

Because   is negative integer, we have ),(>),( vudvud GuvG


 , so 

)(<)( eGHGH  . 

(ii) Since the edge e  is not a cut edge in G , we have eG   is 
connected and not isomorphic to the complete graph of the same order. 
Thus, by (i), we have )(=))((<)( GHeeGHeGH   , as expected. 

Let knU ,  be the set of all unicyclic graphs of order 3n  with girth 

3k . Also, let knH ,  be a subset of knU ,  such that contain a cycle kC  and 

the remaining vertices of graph make up only a subgraph that has exactly a 
common vertex with kC . Obviously this subgraph is a tree. By knL , , we denote 

the graph obtained from kC  and 1knP  by indentifying a vertex of kC  with 

an end vertex of 1knP  and by knS ,  we denote the graph obtained from kC  

and 1knS  by indentifying a vertex of kC  with a vertex of maximum degree 

of 1knS . Now we characterize the minimum and maximum generalization 

degree distance over this special classes of unicyclic graphs. 
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Theorem 2.6. If knHG , , and   is a positive integer, then 

)()( ,knLHGH   , and equality is held if and only if knLG , . 

Proof. Since knH ,  contain only one cycle and one tree, according to 

Corollary 2.3, the maximum H  occur when tree is a path. If path is 

connected to cycle with vertex of minimum degree, by  -transform, H  is 

more than of the case that path connected to cycle with vertex of maximum 
degree. Therefore bound is obtained by calculating )( ,knLH   and the proof 

is completed.       
Theorem 2.7. If knHG , , and   is a positive integer. Then 

)()( ,knSHGH   , and equality is held if and only if knSG , . 

Proof. Since knH ,  contain only one cycle and one tree, according to 

Corollary 2.3, the minimum H  occur when tree is a star. If star is connected to 

cycle with vertex of maximum degree, by  -transform H  is less than of the 

case that star connected to cycle with vertex of minimum degree. Therefore 
bound is obtained by calculating )( ,knSH   and the proof is completed.    

Let   be a negative integer. Define ),(=)(
}{)(

* vuduD
uGVv

  
. 

Theorem 2.8. Let G  be a connected graph of order 2n  and size 
1m  and   is negative integer. Then  

mmnGMGHmdGMdmndGM 11
111 22)()2(1)(2)(2)(   




and equality is held if and only if 2d , where d  is the diameter of G . 
Proof. First, let us prove that the right-hand side inequality holds. 

For each vertex x  in G , we have  

),()(=)(
][)(

* yxdxdxD G
xNGVy

G
 



  

             1),)((2)(  xdnxd GG
  

where the equality is attained if and only if 2)( x . So  

 )()(=)( *

)(
xDxdGH G

GVx


 



 

            1)))((2)()((
)(

 


xdnxdxd GGG
GVx

  

           ,22)()2(1= 11
1 mmnGM     
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where the equality is attained if and only if for each x , 2)( x . So, 

mmnGMGH 11
1 22)()2(1)(   

  with equality if and only if the 

diameter of G  is at most 2, as desired. Now, we turn to the left-hand side 
inequality.For each vertex x  in G ,  

 ),()(=)(
][)(

* yxdxdxD G
xNGVy

G
 



  

            1),)(()(  xdndxd GG
  

where the equality is attained if and only if for any ][)( xNGVy  , 

dyxd =),( , implying that 2d . Therefore,  

 )()(=)( *

)(
xDxdGH G

GVx


 



 

            1)))(()()((
)(

 


xdndxdxd GGG
GVx

  

          ,2)(2)(= 11 mdGMdmndGM    

where the equality is attained if and only if 2d . This completes the proof.      
A cactus is a connected graph each of whose blocks is either a 

cycle or an edge. If a cactus has no cycles, then it is just a tree, and if it has 

exactly a cycle, then it is a unicyclic graph. For 
2
10  n

k , we let k
nG  be 

an n -vertex k -cycle cactus obtained from the n -vertex star by adding k  
independent edges among 1n  pendant vertices. 

The following Lemma is a result of [28]. 

Lemma 2.9. Let G  be an n -vertex k -cycle cactus with 
2
10  n

k . 

Then knnGM 6)( 2
1  , and equality is held if and only if k

nGG  . 

Theorem 2.10. Let G  be an n -vertex k -cycle cactus with 
2
10  n

k  

and   be a negative integer. Then we have: 

)12(2)6)(2(1)( 212 kknnnknnGH  
 , 

and equality is held if and only if k
nGG  . 

Proof. Note that G  has 1 kn  edges. By Theorem 2.8 and 
Lemma 2.9, we have  

 mmnGMGH 11
1 22)()2(1)(   

  
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 1)1)((2)6)(2(1 12   knnknn   

 ).12(2)6)(2(1= 212 kknnnknn    

The equality is held if and only if the diameter of G  is 2 and k
nGG  . 

Note that k
nG  has diameter 2. Thus,  

  )12(2)6)(2(1)( 212 kknnnknnGH  
  

with equality if and only if k
nGG  , so completing the proof.  

By Theorem 2.8, we immediately have the following results for H  

of trees and unicyclic graphs, respectively. 

Corollary 2.11. Let G  be a unicyclic graph on 3n  vertices and   
be a negative integer. Then )(26))(2(1)( 212 nnnnGH  

  and 

equality is held if and only if 1
nGG  . 

The final result in this paper is related to trees and we obtain an 
upper and lower bound for generalization degree distance of trees. 

Corollary 2.12. Let T  be a tree on 2n  vertices and   be a 
negative integer. Then 1),2(2))(2(1)(<)( 212   nnnnTHPH n


  

and the right equality is held if and only if the tree is a star, nST  . 

Proof. By Theorem 2.8, the right-hand side inequality is held. Now, 
we turn to the left-hand side inequality. We prove among all nontrivial 
connected graphs of order n , the graphs with the maximum and minimum 

H  are nK  and nP , respectively. The case of 2=n  is trivial. So we suppose 

that 3n and we first prove that nK  is maximal with respect to H . If G  is 

not a complete graph, then we can add some edges into G  such that we 
obtain nKG  . By Lemma 2.5, )()( nKHGH   , with equality if and only 

if nKG  . Now, let us prove that nP  is minimal with respect to H . Suppose 

first that G  is not isomorphic to a tree. Let )(GT  be a spanning tree of G . 

It then follows from Lemma 2.5, that ))((>)( GTHGH  . So we need only 

to consider the case of G  is a tree. If G  is not isomorphic to the path, then 
by using the  -transform on G  for some times according to the status of 
graph G  we obtain the path nP . Then by Theorem 2.1 and negative integer 

 , we have )(<)( GHPH n  , as expected.   

By the above Corollary, if T  is a tree on 2n  vertices, then 
)()(<)( nAAnA SHTHPH  . 
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