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ABSTRACT. In this paper, Schultz, Modified Schultz and Hosoya polynomial 
and their topological indices of a benzenoid molecular graph constructed by 
Capra-map operation, Ca(C6), are calculated. Several examples are given. 
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INTRODUCTION  

Let G=(V,E) be a simple connected graph of finite order n=|V|, such 
that it has the vertex set V=V(G) and edge set E=E(G). A general reference 
for the notation in Graph Theory is [1]. The distance between vertices u and 
v of G, denoted d(u,v), is the number of edges in a shortest path connecting 
them. The largest distance in G is called the diameter, d(G). Another invariant 
in graph is degree of a vertex vV(G) that it is the number of edges incident in 
it and is denoted by δv. 

In graph theory, several counting polynomials are known: Schultz 
polynomial Sc(G,x), Modified Schultz polynomial Sc*(G,x), Hosoya polynomial 
H(G,x), etc. Their first derivative (in x=1) define, in general, the corresponding 
topological indices. 

Definitions of the above polynomials and indices are as follows: 
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WW(G)=H'(1)+(1/2)H"(1) 

The Schultz index was introduced by Schultz in 1989 [2] while the 
Modified Schultz index was defined by Klavžar and Gutman in 1997 [3]. The 
Schultz index, also called molecular topological index, was studied in many 
papers [2-17]. These indices have been computed in some nanotubes [12-14, 
17-21].  

Hosoya polynomial was introduced by H. Hosoya, in 1988 [16]. The 
first derivative of Hosoya polynomial is just the Wiener index; a Hyper-Wiener 
index, denoted WW(G) (see above) can be computed from the first and second 
derivative of Hosoya polynomial. Wiener index had found numerous application 
and was reported in [8, 16, 21-32].  

The coefficients of Hosoya polynomial can be calculated from layer/shell 
matrices, as shown by Diudea [33-35], who gave a “chemical” generalization 
in Hosoya-Diudea weighted polynomials. 

In chemistry, physics and nanoscience, there are especially 
symmetric structures. Such molecular graphs are Capra-designed planar 
benzenoids. Capra Ca map operation (also called Septupling S1) is a method 
of drawing and modifying the covering of a polyhedral structure, introduced 
by Diudea [36,37]. A detailed example is given in Figure 1. 

 

 

Figure 1. An example of Capra map operation on the hexagon face. 
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In this paper, we applied Capra operation on the benzene molecular 
graph C6 to design planar benzenoid structures; the k-iterated benzenoids are 
denoted Cak(C6)). The two first members of this series are shown in Figure 2.  

Also, Ca(C6) is called Coronene H2 and is the second member of the 
circumcoronene series of benzenoids Hk, k≥1. The first three members of 
circumcoronene series are shown in Figure 3. 

 

 

Figure 2. Benzenoid molecular graphs H2=Ca(C6) and Ca2(C6), representing  
the first two members of Capra-designed planar benzenoids. 

 

 

Figure 3. The first three graphs H1, H2 and H3 of the Circumcoronene series. 
 

Within this paper, we focused on the Schultz, Modified Schultz and 
Hosoya polynomials and their topological indices of the Coronene Ca(C6) 
planar benzenoid structure.  

 
Theorem 1. Let G=Ca(C6) be a Capra-designed planar benzenoid. 

Then the Schultz polynomial of G is equal to: 

Sc(G,x)=156x+252x2+294x3+276x4+222x5+132x6+48x7 
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and the Schultz index Sc(G)=4884. 
The Modified Schultz polynomial of G is equal to: 

Sc*(G,x)=204x+330x2+381x3+348x4+267x5+144x6+48x7 

and the Modified Schultz index Sc*(G)=5934.  

Theorem 2. Let G=Ca(C6) be a Capra-designed planar benzenoid. 
Then, the Hosoya polynomial of G is equal to: 

H(G,x)=24+30x1+48x2+57x3+54x4+45x5+30x6+12x7 

Also, the Wiener index is W(G)=1002, and Hyper Wiener index 
WW(G)=2697. 

 
 

MAIN RESULTS 

In this section we will prove the two above theorems. At first, we 
introduce some notations, related to Figure 4.  

 

 

Figure 4. Capra-designed planar molecular graph: Coronene,  
Ca(C6)=H2 and the notation used in the text.  

 

Let V(G) be the vertex set of G=Ca(C6) with cardinality 24 and E(G) 
the edge set, of cardinality 30. We describe each vertex of G by automorphism 
f, such that:  

 
and 

 

According to the Figure 4, we have the vertices ui,vi of degree 3 and 
vertices wi,ti of degree 2, for all  is the cycle finite 
group of order 6 (or integer number of module 6).  
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Proof of Theorem 1: Let G=Ca(C6) be the Coronene graph. Since 

there exists 24 distinct vertices, we have  2 276n   distinct shortest paths 

between vertices u and v of G. Also, in Coronene there are distances from 
one to seven, for every vertices u,vV(G). In other words,  

, ( ), ( , ) {1, 2,..., 7}.u v V G d u v     

So, we will have seven partitions for proof. 
I . If d(u,v)=1, then  

and |D1|=30 (that is equal to |E(G)|). So, we have three subsets of it. 
I -1. , let v=vi and u=ui=vi+1. Since 3

i iv u   , hence δv+δu=6 and 

δv×δu=9. Therefore |{( , ) | , ( ), ( , ) 1 6, 9}| 6 2.& v u v uu v u v V G d u v             

So, we have two terms 72x1, 108x1of the Schultz polynomial and 
Modified Schultz polynomial, respectively.  

I -2. , let v=ti, wiand u=ui. Since 3
iu

   and 2
i it w   . So, δv+δu=5 

and δv×δu=6. Therefore |{( , )| , ( ), ( , ) 1 5, 6}| 6 2.& v u v uu v u v V G d u v             

So, we have two sentences 60x1, 72x1 of the above polynomials.  
I -3. , let v=wi and u=ti Since 2

i it w   . So, δv+δu=4 and δv×δu=4. 

Therefore |{( , ) | , ( ), ( ,  &) 1 4, 4}| 6v u v uu v u v V G d u v           . 

In general, we have two terms 156x1, 204x1 for the Schultz polynomial 
and Modified Schultz polynomial, respectively.  
II . If d(u, v)=2, then  

 
and |D2|=48. Similarly, we have three subsets of it. 
II -1. , let v=viand u=vi+2, ui+1, ui-1 (or ui+5). Since 3

i iv u   , hence δv+δu=6 

and δv×δu=9. Therefore |{( , )| , ( ), ( , ) 2 6, 9}| 6 3& v u v uu v u v V G d uv            . 

So, we have two terms 108x2, 162x2 for the Schultz polynomial and 
Modified Schultz polynomial, respectively.  
II -2. , let (u=ti, wi & v=vi) or (v=ti+1, wi-1& u=ui). Since 3

i iv u    and 

2,
i it w    therefore |{( , ) | , ( ), ( , ) &2u v u v V G d u v  5, 6}| 24.v u v u         So, 

we have two sentences 120x2, 144x2 of these polynomials. 
II -3. , let v=wi and u=ti. Since 2

i it w   , therefore 

|{( , ) | , ( ), ( ,  &) 2 4, 4}| 6v u v uu v u v V G d u v           . 

Generally, we have two terms 252x2, 330x2 for the Schultz polynomial 
and Modified Schultz polynomial, respectively.  
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III . If ( , ) 3d u v  , then 3 3 2 2 1{( , ),( , ),( , ),( , ),i i i i i i i iD v v v u v u v w     

 
Similarly, we have three subsets of it. 
III -1. , let v=vi & u=vi+3, ui+2, ui-2 or v=vi+1 & u=ui. Hence δv+δu=6 and 
δv×δu=9. Therefore |{( , )| , ( ), ( , ) 3& 6, 9}| 6 3 3 21v u v uu v u v V G d u v               

Then, we have 126x3 and 189x3 in these polynomials. 
III -2. , let v=vi & u=ti+1,ti-1,wi+1,wi-1. Thus 

|{( , ) | , ( ), ( , ) 3& 5, 6}| 6 4 24v u v uu v u v V G d u v            . 

So, we have 120x3 and 144x3. 
III -3. , let v=wi & u=wi+1 or v=ti & u=ti+1. Since 2

i it w   , then 

|{( , ) | , ( ), ( , ) 3& 4, 4}| 12v u v uu v u v V G d u v           . Overall, there  

are the terms 294x3,381x3 for the Schultz polynomial and Modified Schultz 
polynomial, respectively. 
IV . If d(u,v)=4, then 4 3 2 2 2{( , ),( , ),( , ),( , ),i i i i i i i iD v u v w v w v t     

 and |D4|=54. Similarly,  
we have three subsets of D4. 
IV -1. , since d(vi,ui+3)=d(ui,ui+2)=4, thus |{( , ) ( )| ( , ) 4&u v V G d u v   

6, 9}| 12.v u v u         Thus, we have the term 72x4 for the Schultz 

polynomial and 108x4 for the Modified Schultz polynomial.  
IV -2. , let (u=ti+2,ti-2,wi+2,wi-2 & v=vi) or (v=ti-1,wi-1,wi+1 & u=ui). Thus, 

|{( , ) | , ( ), ( , ) 4& 5, 6}| 36v u v uu v u v V G d u v          . So, we have the term 

180x4 for the Schultz polynomial and 216x4 for the Modified Schultz polynomial.  
IV -3. , let v=wi & u=wi+2. Thus,  

|{( , ) ( ) | , ( ), ( , ) 4& 4, 4}| 6.v u v uu v V G u v V G d u v            

Generally, the two terms for the Schultz polynomial and Modified 
Schultz polynomial are 276x4, 348x4, respectively.  
V . If d(u,v)=5, then 5 3 3 2 2 2{( , ),( , ),( , ),( , ),( , ),i i i i i i i i i iD v t v w u w u w u t      

 and |D5|=45. Again, we have three 
subsets of D5 as above.  
V -1. We have . Hence, 
18x5 and 27x5 are the terms for the Schultz polynomial and Modified Schultz 
polynomial, respectively.  
V -2. , let (v=ti+2,ti-2,wi+2,wi-2 & u=ui) or (u=ti+3,wi+3 & v=vi), therefore 

|{( , )| , ( ), ( , ) 5& 5, 6}| 36.v u v uu v u v V G d u v           Thus, there is the term 180x5 

for the Schultz polynomial and 261x5 for the Modified Schultz polynomial.  
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V -3.  since d(wi,ti-1)=5, |{( , ) ( )| ( , ) 5& 4}| 6.v u v uu v V G d u v            

In general, the terms are 222x5, 267x5 for these polynomials.  
VI . If d(u,v)=6, then  

and |D6|=30. It means that, we have two subsets of D6.  

VI -1. We have . 
Then, 60x6 and 72x6 are the two terms for the Schultz polynomial and 
Modified Schultz polynomial, respectively.  
VI -2. , since d(wi,wi+2)=d(wi,ti-2)=d(ti,ti+2)=6. Therefore, 

|{( , ) | , ( ), ( , ) 6& 4}| 18v u v uu v u v V G d u v          . In general, we have 132x6 

for the Schultz polynomial and 144x6 for the Modified Schultz polynomial.  

VII . If d(u,v)=7, then  

( , ) 7 4}| 1& 2.v u v ud u v          Thus, there is the same term 48x7 for the 

Schultz polynomial and Modified Schultz polynomial. Now, we enumerate all 
distinct shortest path of any , ( )u v V G . Thus the Schultz polynomial of 

Ca(C6) is: Sc(Ca(C6),x)=156x+252x2+294x3+276x4+222x5+132x6+48x7 and 
the Schultz index is Sc(Ca(C6))=4884. 

The Modified Schultz polynomial of Ca(C6) is: 
Sc*(Ca(C6),x)=204x+330x2+381x3+348x4+267x5+144x6+48x7 
and the Modified Schultz index Sc*(Ca(C6))=5934.  

Thus, the proof of Theorem 1 is complete.  

Proof of Theorem 2. Let Ca(C6)) be the molecular graph of Coronene. 
Since (3,3) (3,2) (2,2)  i i i iD D D D , {1, 2,...,7}i    

therefore the set of distances in G is given by the following relation: 
( , ) | | | (3,3) | | (3, 2) | | (2,2) |i i i id G i D D D D    . Keeping in mind the definition 

of Hosoya polynomial and the data provided in the proof of Theorem 1, the 
formula of this polynomial in Coronene is: 

( )
2 3 4 5 6 7

0
( , ) ( , ) 24 30 48 57 54 45 30 12 .

d G
i

i
H G x d G i x x x x x x x x



           

Hence, the Wiener and Hyper Wiener indices of Coronene are: 
( )

0

( ) ( , ) 24 0 30 1 48 2 57 3 54 4 45 5 30 6 12 7 1002.
d G

i
W G i d G i



                    

WW(G)=1002+(1/2)(48×2+57×3×2+54×4×3+45×5×4+30×6×5+12×7×6)=2697 
Thus, the proof of Theorem 2 is complete.  
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CONCLUSIONS 

In this paper, Schultz, Modified Schultz and Hosoya polynomials and 
their topological indices in the molecular graph of Coronene (constructed by 
Capra-operated benzenoid: Ca(C6) (or H2)) are calculated. These polynomials 
and indices could be useful in the topological investigation of benzenoids 
molecules. 
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