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ABSTRACT. One the most famous topological index is the Wiener index. It 
represents the sum of distances of a connected graph and was widely used in 
correlational studies involving various physical, chemical and biological 
properties. This topological index was introduced in 1947 by one of the pioneer 
of this area Harold Wiener. In the present paper, we compute the Wiener 
index of an infinite class of fullerenes. 
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INTRODUCTION  

Throughout this paper all graphs considered are simple and connected. 
The vertex and edge sets of a graph G are denoted by V(G) and E(G), 
respectively. The distance dG(x, y) between two vertices x and y of V(G) is 
defined as the length of any shortest path in G connecting x and y. The 
distance number or Wiener index is a topological invariant widely used in 
studies of structure-property and structure-activity. In the last decades it has 
been also studied by pure mathematics, see [1 – 5]. 

The Wiener index was first defined by Wiener to obtain the sum of 
distances between carbon atoms in saturated hydrocarbons [6] but, Hosoya 
reformulated the Wiener index respect to the distances between any pair of 
vertices: 

     ,
( , )Gu v V G

W G   d u v . 
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Some physical properties, such as the boiling point, are related to the 
geometric structure of the molecules. The first investigations of the Wiener 
index were made by Harold Wiener in 1947 who realized that there are 
correlations between the boiling points of paraffin and the structure of the 
molecules. 

The main goal of this paper is to compute the Wiener index of a new 
infinite class of fullerene graphs, C20n + 60. The first member of this class is 
the well-known IPR fullerene C60 with icosahedral symmetry group. Here, our 
notation is standard and mainly taken from standard books of graph theory [7]. 

We encourage reader to references [8 - 12] for more details about the concept 
of Wiener index. 

 
 

RESULTS AND DISCUSSION 

Fullerene graphs are mathematical models of fullerenes, polyhedral 
molecules made of carbon atoms whose faces are pentagons and hexagons. A 
fullerene is a planar, 3-regular and 3-connected graph that has only pentagonal 
and hexagonal faces. Such graphs on n vertices exist for all even n ≥ 24 and 
for n = 20. By Euler's theorem, one can prove that the number of pentagons 
and hexagons in a fullerene molecule Cn are 12 and n/2 – 10, respectively. The 
first fullerene discovered by Robert Curl, Harold Kroto and Richard Smalley 
was buckminsterfullerene C60, [13, 14]. 

In this section by solving a recursive sequence we determine the 
Wiener index of a class of fullerene graphs with exactly 20n + 60 (n = 0, 1, 2,..) 
vertices. Clearly, they have 10n + 90 edges. We denote this class of fullerenes 
by C20n + 60. The first member of this class can be obtained by putting n = 0, 
see Figure 1.  

 

 
Figure 1. 2 – D graph of fullerene C20n + 60, n = 0. 
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In this paper we prove that the Wiener index of this class of fullerenes 
for n ≥ 8 is as follows: 

     3 2
20 60  10(40 360 310 663) / 3.nW C n n n  

We can also apply our method to compute the Wiener index in other 
classes of fullerene graphs. Zhang et al. [15] is described a method to 
obtain a fullerene graph from a zig–zag or armchair nanotubes.  

Denote by TZ[n, m] a zig–zag nanotube with n rows and m columns 
of hexagons, see Figure 2. Combine a nanotube TZ[n, 10] with two copies 
of the cap B (Figure 3) as shown in Figure 4, the resulted graph being an 
IPR fullerene, which has 20n + 60 vertices and exactly 10n + 20 hexagonal 
faces.  

 

1 m...2
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n

 

Figure 2. 2 – D graph of zig – zag nanotube Tz[n, m], for m = 10 and n = 6. 
 

 

Figure 3. Cap B. 
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Figure 4. Fullerene C20n+60 constructed by combining two copies of caps B  

and the zigzag nanotube TZ[n, 10]. 
 

A block matrix is a matrix whose entries are again a matrix. In other 
words, the block matrix can be written in terms of smaller matrices. By using 
the concept of the block matrices, we stated 
 

Theorem 1. The Wiener index of the G = TZ[n, 10] nanotube for n ≥ 9 
is calculated as: 

   3 2484 30371
( ) 484 16819.

3 3
W G n n n  

Proof. According to Figure 5, it is easy to see that TZ[n, 10] nanotube 
has n + 1 layers of vertices. Let U = {u1, u2, …, u10} be the vertices of the last 
row. To compute the Wiener index of this nanotube we make use of a recursive 
sequence method. Let also Un be the Wiener index of G = TZ[n, 10]. By 
using definition of the Wiener index one can see that: 

 

 
  

  

  

 




, , \

, \

1 , \

2 ( ) ( , ) ( , )

( , )

90 ( , ).

n x y U x y V U

x V y V U

n x V y V U

W G U d x y d x y

d x y

U d x y

 

Thus, it is enough to compute the summation   , \
( , )

x V y V U
d x y , but 

by using the symmetry of this graph we have:  

    1 2, \
( , ) 5[ ( ) ( )],

x V y V U
d x y d u d u  

where, 1 1\
( ) ( , )

v V U
d u d u v  and d(u2) can be defined by a similar way. By 

computing these values one can see that: 

         
         

1
2

( ) 437 199( 2) 30( 2)( 3) ( 2)( 3)( 4),
( ) 431 193( 2) 28( 2)( 3) ( 2)( 3)( 4).

d u n n n n n n
d u n n n n n n  
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This implies that Un+1 = Un + 90 + 5[d(u1) + d(u2)] = 10n3 + 200n2 + 
770n + 1920. By solving this recursive sequence we have: 

   3 2484 30371
( ) 484 16819.

3 3
W G n n n  

Finally, by computing the Wiener index of TZ[n, 10] for n = 1, …, 8, 
as reported in Table 1, the proof is completed. 

As a corollary of Theorem 1, we can compute the Wiener index of 
C20n + 60 fullerenes as follows: 

u1
u2

u10

.
.

.

 
Figure 5. The 2D graph of the nanotube TZ[n,10]. 

 
Table 1. The values of Wiener index for special cases 

n Wiener Index 
1 4420 
2 14047 
3 20400 
4 3400 
5 52100 
6 75320 
7 133232 
8 177771 

 
Theorem 2.  

     3 2
20 60 10(40 360 310 663) / 3.nW C  n n n  

Proof. The distance matrix of fullerene C20n+60 can be written as a block 
matrix by the following way, see Figure 4: 
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Suppose {v1, v2, …, vr}, {u1, …, us} and {w1, …, wr} be the set of 
vertices of the left caps, vertices of TZ[n, 10] and vertices of the second cap, 
respectively. The distance matrix D can be written in the following form: 

 
   
 
 

V B W

D B U B

W B V

, 

where V, B and W are distances between vertices of the first cap with the 
vertices of the first cap, vertices of TZ[n, 10] and vertices of the right cap. 
The matrix U is the distance matrix of vertices {u1, …, us}. In other words, U is 
the distance matrix of TZ[n, 10] and this matrix was computed in Theorem 1. It 
is easy to see that the Wiener index is equal to the half-sum of distances 
between all pairs of vertices of D. Notice that for any fullerene graph C20n+60, 
the matrix V is constant. Obviously, the distance matrices B, U and W are 
dependant to the number of rows in the nanotube TZ[n, 10]. In other words, 
if Wn and Wn-1 are the Wiener indices of the fullerenes C20n+60 and C20(n-1)+60, 
respectively, then similar to the proof of the Theorem 1, for n ≥ 8 we have: 

  W9 – W8 = 59700, 
 W10 – W9 = 69300, 
W11 – W10 = 79700, 
W12 – W11 = 90900, 

  W13 – W12 = 102900. 

By using a recursive sequence, we have the following formula for 
the Wiener index of fullerene C20n+60: 

  2
-1- 400 1200 7700.n nW  W n n  

If we solve this recursive sequence then, the resulted values represent 
the Wiener index:  

     3 2
20 60 10(40 360 310 663) / 3.nW C n n n  

The Wiener index of C20n+60 for n = 0, …, 7 is also reported in Table 2 
and this completes the proof of the Theorem. 

In the third column of table 2, the boiling pont of a series of 
fullerenes C20n+60, for n = 0, …, 8 is listed. These values are obtained by 
ACD/LABS software [16]. One can see that there is a correlation of R = 
0.913 between the values of Wiener index and the boiling point of fullerene 
C20n+60. This result is mainly because the distances in the molecules are 
related to the molecular size. 
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Table 2. The Wiener index of C20n+60, for n = 0, …, 8. 

n W BP 
0 11089 849 
1 17600 1017 
2 30770 1296 
3 48625 1417 
4 71800 1530 
5 100870 1635 
6 136455 1735 
7 179320 1829 
8 230210 1933 

 
 
CONCLUSIONS 

The Wiener index, representing the sum of distances of a connected 
graph, provided good correlation with some size-dependent physic-chemical or 
biological properties. In the present paper, we computed, by a recursive 
method, the Wiener index of an infinite class of fullerenes and tested its 
correlating ability with the (computed) boiling point of these fullerenes. 
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