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ABSTRACT. In graph theory, various polynomials and topological indices are 
known, as invariants under graph automorphism. In this paper, we focus on 
the structure of Capra-designed planar benzenoid series Cak(C6), k≥0 and 
compute on it several topological indices and polynomials: first and second 
Zagreb polynomials and their corresponding indices. 
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INTRODUCTION  

 
Let G=(V,E) be a molecular graph with the vertex set V(G) and the 

edge set E(G). |V (G)|=n, |E(G)|=e are the number of vertices and edges. A 
molecular graph is a simple finite graph such that its vertices correspond to 
the atoms and the edges to the chemical bonds. The distance d(u,v) in the 
graph G is the number of edges in a shortest path between two vertices u 
and v. The number of vertex pairs at unit distance equals the number of 
edges. A topological index of a graph is a number related to that graph and 
is invariant under graph automorphism. 

Wiener index W(G) is the oldest topological index [1-5], which has 
found many chemical applications. It is defined as:  

 

( ) ( )

1( ) ( , )
2 u V G v V G

W G d u v
∈ ∈

=    
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Hyper-Wiener index is a more recently introduced distance-based 
molecular descriptor [6]:  

( )2 2

( ) ( ) ( ) ( )

1 1 1( ) ( , ) ( , ) ( ) ( , ) .
2 2 2u V G v V G u V G v V G

WW G d u v d u v W G d u v
∈ ∈ ∈ ∈

= + = +     

Denote by d(G,k) the number of vertex pairs of G lying at distance k 
to each other and by d(G) the topological diameter (i.e, the longest 
topological distance in G). Then Wiener and hyper-Wiener indices of G can 
be expressed as [7, 8]:  

( )
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Other oldest graph invariant is the First Zagreb index, which was 
formally introduced by Gutman and Trinajstić [9, 10]. It is denoted by M1(G) 
and is defined as the sum of squares of the vertex degrees:  

[ ]2
1

( ) ( )
( ) ( ) ( ) ( )

v V G e uv E G
M G d v d u d v

∈ = ∈

= = +   

where dv is the degree of vertex v. Next, Gutman introduced the Second 
Zagreb index M2(G) as: 

[ ]2
( )

( ) ( ) ( )
e uv E G

M G d u d v
= ∈

= ×  

Some basic properties of M1(G) can be found in ref. [9]. For a survey 
on theory and applications of Zagreb indices see ref. [10]. Related to the 
two above topological indices, we have the first Zagreb Polynomial M1(G,x) 
and second Zagreb Polynomial M2(G,x), respectively. They are defined as:  

( ) ( )
1

( )
( , ) d u d v

e uv E G
M G x x +

= ∈

=   

( ) ( )
2

( )
( , ) d u d v

e uv E G
M G x x

= ∈

=   

There was a vast research concerning Zagreb indices and Wiener 
index with its modifications [6] and relations between Wiener, hyper-Wiener 
and Zagreb indices [9-26].  

 
WHAT IT IS THE CAPRA OPERATION? 

 
A mapping is a new drawing of an arbitrary planar graph G on the 

plane. In graph theory, there are many different mappings (or drawing); one of 
them is Capra operation. This method enables one to build a new structure 
of a planar graph G. 
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Let G be a cyclic planar graph. Capra map operation is achieved as 
follows:  
(i) insert two vertices on every edge of G;  
(ii) add pendant vertices to the above inserted ones and  
(iii) connect the pendant vertices in order (-1,+3) around the boundary 

of a face of G. By runing these steps for every face/cycle of G, one 
obtains the Capra-transform of G Ca(G), see Figure 1.  

 

 

Figure 1. Examples of Capra operation on the square face  
(top row) and mapping Capra of planar hexagon (bottom row). 

 
 
By iterating the Capra-operation on the hexagon (i.e. benzene graph 

C6) and its Ca-transforms, a benzenoid series (Figures 2 and 3) can be 
designed. We will use the Capra-designed benzene series to calculate some 
connectivity indices (see below).  

This method was introduced by M.V. Diudea and used in many papers 
[27-36]. Since Capra of planar benzenoid series has a very remarkable 
structure, we lionize it.  

We denote Capra operation by Ca, in this paper, as originally Diudea 
did. Thus, Capra operation of arbitrary graph G is Ca(G), iteration of Capra 
will be denoted by CaCa(G) (or we denote Ca2(G)) (Figures 2 and 3). 

The benzene molecule is a usual molecule in chemistry, physics and 
nano sciences. This molecule is very useful to synthesize aromatic compounds. 
We use the Capra operation to generate new structures of molecular graph 
benzene series. 
 
Theorem 1. Let Ca(C6) be the first member of Capra of benzenoid series. 
Then, Hosoya polynomial of Ca(C6) is equal to:  

H(Ca(C6),x)=24+30x1+48x2+57x3+x54x4+45x5+30x6+12x7 

and the Wiener index of Ca(C6) is equal to 1002.  
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Hosoya polynomial H(G) is equal to ( , )
( ) ( )

1 .2
d u v

u V G v V G
x

∈ ∈   It is easy to 

see that Wiener index is obtained from Hosoya polynomial as the first 
derivative, in x=1. 

 

 
 

Figure 2. The first two graphs Ca(C6) and Ca2(C6) from the Capra of planar 
benzenoid series, together with the molecular graph of benzene  

(denoted here Ca0(C6)) 
 
 

 
 

Figure 3. Graph Ca3(C6) is the third member of Capra  
planar benzenoid series. 



COMPUTING FIRST AND SECOND ZAGREB INDEX, FIRST AND SECOND ZAGREB POLYNOMIAL…  
 
 

 137 

By these terminologies, we have the following theorem:  
 

Theorem 2. Consider the graph G=Cak(C6) as the iterative Capra of planar 
benzenoid series. Then:  
First Zagreb polynomial of G is equal to 

M1(Cak(C6),x)=(3(7k)-2(3k)-3)x6+4(3k)x5+(3k+3)x4 

and the First Zagreb index is M1(Cak(C6))=18(7k)+12(3k)-6. 
Second Zagreb polynomial of G is equal to 

M2Cak(C6),x)=(3(7k)-2(3k)-3)x94(3k)x6(3k+3)x4 

and the Second Zagreb index of G is M2(Cak(C6))=27(7k)+10(3k)-15.  
 
 

RESULTS AND DISCUSSION 
 
Capra transforms of a planar benzenoid series is a family of molecular 

graphs which are generalizations of benzene molecule C6. 
In other words, we consider the base member of this family is the 

planar benzene, denoted here Ca0(C6)=C6=benzene. It is easy to see that 
Cak(C6)=Ca(Cak-1(C6)) (Figures 2 and 3) [27-36]. In addition, we need the 
following definition.  

 
Definition 3. [21] Let G be a molecular graph and dv is the degree of vertex 

( ).v V G∈  We divide vertex set V(G) and edge set E(G) of graph G to 
several partitions, as follow:  
 

, , { ( ) | },i vi i V v V G d iδ∀ < < Δ = ∈ =  

and 2 2 *, , { ( ) | }.k v uk k E e uv E G d d kδ∀ ≤ ≤ Δ = = ∈ × =  

Obviously, 1 1vd nδ≤ ≤ ≤ Δ ≤ −  such that { | ( )}vMin d v V Gδ = ∈  and 

{ | ( )}.vMax d v V GΔ = ∈ Now, we start to proof of the above theorem. 

 
Proof of Theorem 2. Let G=Cak(C6) (k≥0) be the Capra planar benzenoid 
series. By construction, the structure Cak(C6) collects seven times of structure 
Cak-1(C6) (we call "flower" the substructure Cak-1(C6) in the graph Cak(C6)). 
Therefore, by simple induction on k, the vertex set of Cak(C6) will have 
7×|V(Cak(C6))|-6(2×3k-1+1) members. Because, there are 3k-1+1 and 3k-1 
common vertices between seven flowers Cak-1(C6) in Cak(C6), marked by 
full black color in the above figures. Similarly, the edge set E(Cak(C6)) have 
7×|E(Cak(C6))|-6(2×3k-1+1) members. Since, there are 3k-1 and 3k-1 common 
edges (full black color in these figures).  
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Now, we solve the recursive sequences |V(Cak(C6))| and 
|E(Cak(C6))|. First, suppose nk=|V(Cak(C6))| and ek=|E(Cak(C6))| so 

17 4(3 ) 6
k

k
k kn n −= − −

ò
 and 17 4(3 ).

k

k
k ke e −= −

ò
 Thus, we have  

17 4 6k k kn n −= − −ò  

2 17(7 4 6) 4 6k k kn − −= − − − −ò ò  
2

2 17 7(4 6) (4 6)k k kn − −= − + − +ò ò  
3 2

3 2 17 7 (4 6) 7(4 6) (4 6)k k k kn − − −= − + − + − +ò ò ò  

1
( 1) 17 7 (4 6) 7(4 6) (4 6)i i

k i k i k kn −
− − − −= − + −…− + − +


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1

0
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i j

k i k j
j

n
−

− −
=

= − + ò  

  
1

0
7 7 (4 6)

k
k i

k k k i
i

n
−

− −
=

= − + ò  

1 1

0
0 0

7 4 7 3 6 7 .
k k

k i k i i

i i
n

− −
−

= =

= − −    (1) 

where n0=6 is the number of vertices in benzene C6 (Figure 2) and 
1

0
6 7k i

i

−

=  is equal to 6(7 1) 7 1.
7 1

k
k− = −

−
On the other hand, since 

0 1 1 1 1 0 1 1

0
( ) ( )( ) ( ).
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α β α β α β α β α β α β α β α β− − − + +

=
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Therefore, by using equations (1) and (2), we have 
36 7 4 (7 3 ) (7 1)
4

k k k k
kn

  = × − − + −  
  

 and 0,k∀ ≥ nk=|V(Cak(C6))|=2×7k+3k+1+1.  

By using a similar argument and (1), we can see that  
2

1 2 1

1 1

0 0
0 0

7 4 7 7 ( 4 ) 4

7 4 7 7 4 7 3 .

k k k k k k

k k
k i k i k i

k k k i
i i

e e e

e e

− − −

− −
−

− = −
= =

= − = − −

= − = − 



ò ò ò

ò

 

It is easy to see that, the first member of recursive sequence ek is 

e0=6, (Figure 2). Now, by using (2), we have 
36 7 4 (7 3 )
4

k k k
ke

 = × − − 
 

 and 

the size of edge set E(Cak(C6)) is equal to: ek=|E(Cak(C6))|=3(7k+3k), 0.k∀ ≥  
Also, according to Figures 2 and 3, we see that the number of 

vertices of degree two in the graph Cak(C6) (we denote by ( )
2
kv ) is equal to 

( 1)
26 3 6
6

kv − 
× − 

 
. The six removed vertices are the common ones between 

the six flowers "Cak-1(C6)" with degree three. By using a similar argument 
and simple induction, we have ( 1)

2
kv −  the numbers of edges of graph 

Cak(C6), which are in the set 4E  or *
4E  (denoted by ( )

4
ke  ). 

Now, we solve the recursive sequence 
( 1)

( ) 2
2 6(3 1)

6

k
k vv

− 
= − 

 
 and we 

conclude 
1

( ) ( 1) ( 2) (0)
2 2 2 2

0

3 6 3(3 6) 6 3 6 3 .
k

k k k k i

i
v v v v

−
− −

=

= − = − − = … = −   

It is obvious that, according to the structure of benzene, (0)
2 0 6v n= = . 

Thus, ( )
2

3 16 3 6 .
3 1

k
k kv + −= × − = + − 

k 13 3  

 

Also, ( ) * ( 1)
4 4 4 2| | | |k ke E E v −= = = = +k3 3  and according to the above 

definition, it is obvious that, for Capra of planar benzenoid series G=Cak(C6) 
we have two partitions: 

2 6{ ( ( )) | 2}k vV v V Ca C d= ∈ =  and 3 6{ ( ( )) | 3},k vV v V Ca C d= ∈ =  with the size 
13 3k + +  and 2(7 1),k −  respectively.  
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On the other hand, according to the structure of Capra planar 

benzenoid series Cak(C6), there are ( )
22
kv  edges, such that the first point of 

them is a vertex with degree two. Among these edges, there exist ( 1)
2
kv −  

edges, of which the first and end point of them have degree 2 (the 

members of 4E  or *
4E ).  

Thus, ( ) * ( ) ( ) ( ) ( 1)
5 5 6 2 4 2 2| | | | 2 2 2 2k k k k ke E E v e v v −= = = − = − . So, the size 

of edge set 5E  and *
6E  is equal to ( ) 1

5 2(3 3 3 3) 4(3 )k k k ke += + − − =   

Now, it is obvious that:  

( )( ) * ( ) ( )
6 6 9 5 4| | | | 3 7 3k k k k ke E E e e= = = + − −  

13 7 3 4 3 3 3
3 7 2 3 3
( ( ) ).

k k k k

k k

+

−

= × + − × − −
= × − × −
= − −k k 13 7 2 3 1

 

 

Now, we know the size of all sets * *
2 3 4 4 5 6 6, , , , , ,V V E E E E E  and *

9 .E  

So, we can calculate the First and Second Zagreb Polynomial of Capra 
planar benzenoid series G=Cak(C6), as follow:  

First Zagreb Polynomial of G=Cak(C6): 
( ) ( )

1 ( )
( , ) d u d v

e E G
M G x x +

∈
=   

6 5 4

6 5 4
e E e E e E
x x x

∈ ∈ ∈
= + +    

6 5 4
6 5 4| | | | | |E x E x E x= + +  

1 6 5 1 43(7 2(3 ) 1) 4(3 ) 3(3 1)k k k kx x x− −= − − + + +  
 

Second Zagreb Polynomial of 6( )kG Ca C=  : 

* * *
9 6 4

( ) ( ) 9 6 4
2

( )
( , ) d u d v

e E G e E e E e E

M G x x x x x
∈ ∈ ∈ ∈

= = + +     

1 9 6 1 43(7 2(3 ) 1) 4(3 ) 3(3 1) .k k k kx x x− −= − − + + +  
 

Also, according to definition of First and Second Zagreb index, we 
have:  

1 11
1 1

( , )( ) | 18(7 2(3 ) 1) 20(3 ) 12(3 1)

18(7 ) 12(3 ) 6

k k k k
x

k k

M G xM G
x

− −
=

∂= = − − + + +
∂

= + −
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and 
1 12

2 1
( , )( ) | 27(7 2(3 ) 1) 24(3 ) 12(3 1)

27(7 ) 10(3 ) 15

k k k k
x

k k

M G xM G
x

− −
=

∂= = − − + + +
∂

= + −
 

Of course, by using |V2| and|V3|, we have 
1 2 2

1( ) (3 3)2 2(7 1)3 18(7 ) 12(3 ) 6.k k k kM G += + + − = + −  

Thus, we completed the proof of the theorem 3. 
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