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SECOND-CONNECTIVITY INDEX OF CAPRA-DESIGNED
PLANAR BENZENOID SERIES Ca,(C¢)

MOHAMMAD REZA FARAHANI®, KATALIN KOLLO",
MIRANDA PETRONELLA VLAD®

ABSTRACT. The benzene is a key molecule in organic chemistry. In this
paper, we focus on the structure of the Capra-designed planar benzenoid
series Ca,(Cs) and compute the 2-connectivity index in the general case of
this family of benzenoids.

Keywords: Randi¢ connectivity index, Sum-connectivity index, Benzenoid,
Capra, Second connectivity index.

INTRODUCTION

Let G=(V,E) be a simple connected graph with the vertex set V(G)
and the edge set E(G). Molecular connectivity indices are related to the
accessibility to the reaction centres. In identifying the accessibility perimeters,
we have to recognize the atom degrees. The generalized connectivity index
is the m-connectivity index, defined as:

m l
1G)= Y —
Vivi "'Vi . . ..d-
12 'm+l L) L

where y ...y runs over all paths of length min G and d;is the degree
)

P4l

of vertex v,e€ V(G). In particular, 1-connectivity index (the original Randi¢
index) can be written as

1G= Y

e=(i,j)eE(G) didj
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The Randi¢ Connectivity Index was introduced by Milan Randi¢ [1, 2]
in 1975. For more study, see references [3-9]. The 2-connectivity index is
defined as follows:

1
2 G —
Z( ) Vn%%‘; \[dildizdi3

The Randi¢ and second-order connectivity indices (or 2-connectivity
index) represents the molecular accessibility areas and volumes, respectively.

The benzene is a usual chemical molecule in chemistry with a
distinctive structure. The benzene is a key molecule in chemistry and related
sciences, with various applications in different fields.

We use the Capra-designed operation to generate new structures
called benzoids. This operation was introduced by M.V. Diudea and used in
many papers [10-19], see Figure 1.

benzene Ca(Cg)

Figure 1. The first two graphs Ca;(Cs) and Ca,(Cg) from the Capra of planar
benzenoid series and molecular graph benzene Cg=Cay(Cs).

RESULTS AND DISCUSSION

Let d; denote the number of edges in G connecting vertices of
degrees i and j; clearly, dj=d;. Define djxas a number of 2-edges paths with
3 vertices of degree /, j and k, respectively. It is obvious that dj =dj; and the
number of 2-edge paths for all possible i, j and k is denoted by d»(G).

Theorem 1. [16] Consider the graph G=Cay(Cs), k € N is the Capra-
designed planar benzenoid series. Then Randi¢ connectivity index x(Cax(Cs))
is equal to 2(7" )+ (46 -3 +1

2
Theorem 2. Second-connectivity index of Cay(Cs) is computed as:

2\/' (N— 5\/_] {«B 3f]

2(Cay (Co) ==+ p
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Proof of Theorem 2. Let G=Ca\(Cs) be the Capra-designed planar
benzenoid series. Since, this graph has 2x7“+3"+1 vertices and 3x7%+3
edges (denoted by n, and ey, respectively). At the first, we determine the
number of 2-edge paths 4!")(G) in G=Ca(Cs). So, we attend to dj for every

arbitrary vertices i, j and k; and obviously the number of djis dependent of
the degree of vertex j (denoted by d)). On the other hand, the number of 2-
edge paths passing the vertex j of G is equal to (d-1)+(d-2)+

4(2)+(1)=%9 D and obviously dPG)= > 4,d, =) There are two

2 vel (G)
partitions V,={ €V ((4,(C,))|d, =2} and V,={ €V (Cq, (C,))|d, =3}, with size
v =|Vy|= 3*"+3 and v ") =|V5|=2(7%-1) respectively. Then,

iOcaCcy= Yy LD

ver Ca(Coy 2

o 36-D) | w2020

velr, vel,

=3x2(7" =) +1x3(3" +1)
=6x7+3"1+3
Now, according to the Capra-designed structure (Figure 2), we see
that there exist two kinds of 2-edge paths d.\*’ (Ca\(Ce)): internal 2-edge

paths and external 2-edge paths. Thus we have:

dz(k)(Cak (G)) = 6(7k) + 3 -3
67, W

. —_— —
internal 2—edge paths  external 2—edge paths

where (i is the number of cycles with length six and is equal to 7.
Alternatively, the number of internal 2-edge paths of Cay(Cs) is equal to

d" =6 ¢=6(7"). The number of external 2-edge paths of Ca,(Cs) is equal

2 (in)

to d¥

ey =3"-3, being obtained from the sequence:
d(k—l)
0,6, 24,6x13,..., d}" ., = 6(%“).
In proving theorem 2 we have to calculate the number of 2-edges
paths d%), d.\i) from internal 2-edge paths and d.}), d.}) from external 2-
edge paths:
(k) (k) (k) (k) (k)
d" (Cay(Cs))= dypy +dyy  +dyy + dy) +dyy,
N —

internal 2—edges paths external 2—edges paths
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internal 2-edges paths

external 2-edges paths

Figure 2. The internal 2-edges paths and external 2-edges paths of Ca,(Cg).

It is obvious that, in Cs=Cay(Ce), dim = dii= diy= di3) = dig=0,

d® =6 and 2 (Ca(C. )= —0 21213
222 ){( 0 ( 6 )) m
Next, for Ca;(Ce), d)y =2%6, d1) =0, d}) =6, di)=2x6and d3,=18. Thus
12 6 12 0 18

2 4(Ca,(C,)) = =11.4886.

+ + + +
V2x2x3  2x3x2  2x3x3  3x2x3  f3x3x3

Now, by simple calculation and induction on n=1,2,3,....k, (see
Figure 1., 2. and 3.) we show that for G=Ca(Cy)

dypy =0, dy,y =12, d}}) =24, d3) =2(3"+3)=60, ..., ¢¥) =2(3* +3)=2e").
o,
intermal

dg; =0, d;g =0, a’3(223) =12, di) =24, ..., dg}) =y ®) _2e®) =3 +3_2(3k +3)=3k_3_
-

external

(k1)
d232

d® =0, d{}) =6, di) =12, d2(§’;=6(%—1)=30, d‘B";=6(T—1)=3d§§2’”—6=3k+3-

diy =0, di)=0+2x6=12, di}=2x6+6x6=48, df})=8x6+18x6=156,

(k) _ q(k) (k)  _p/mk
d233 _d233(ex) +d233(m) =6(3"-1)

A3y =33 ) ~d33 ) =3 =3-(3 +3)=63""-1)
Where (k) _ d2(§3_1)(in) _ (k-1) _ k
4353 iy = 6(T) =3d,3; iy =4(3")
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dy; =0, dy) =18, d2) =228, ) =1866,

(k) _ (k) (k) (k) (k) (k) (k)
d333 _dz _d233 (ex) —d 233 (in) _d232 (ex) _d323 (ex) _d223 (in)
intemal

=§7)+3*" -3-2(3")-6-3" +3-6(3")+6-3" =3 =6x7*-7(3")-3
In totally,

6(7)-7(3")-3 ijk=333| |
. . internal 2 —edge paths
2¢" =2(3" +3) ijk =223
di) =163~ —1)+43")=6(3 -1) ijk =233
W —2e) =3 -3 ijk =323

external 2—edge paths
343 ijk = 232} sep

where e’ =3" -3 is the number of edge of Ca(Cs) with end-point and
first-point of degree 2. Therefore:

1
y(Ca (CH= D, ———
ViviyVis \ldildizdi3
_ 203" +3)+3" +3 +3k —3+6(3")—6+ 6(7°)-7(3")-3
Ji2 V18 V27
_ 3"“6+9ﬁ+ 7(3"6)—9\/5+ 6(7k)—;(3k)—3\/§
(G2 +27+12(7) - 143" =63 +(7(3*) - 272
18
_ (27 =53+ 2033 + (73" -27W2)
18 '

The second-connectivity index of Ca,(Cs) is equal to

6 18
Thus, we completed the proof of Theorem 2.

We can use formula for %x(Ca(Cs)) to compute some numerical
examples:

N

> ¥(Ca, (C,))=1.1547(7" ) +1.1688(3" ) —0.3892.

Examples for 2x(Cay(Cs)) for k=1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100
are given in Table 1.
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Table 1. Values of second-connectivity index * y(Ca, (C,))

k Number of Vertices Number of edges 2-connectivity index
1 24 30 11. 2001

2 123 174 66. 7103

3 768 1110 427. 2305

4 5046 7446 2866. 7183

5 34344 51150 19690. 6721

10 565127646 847602894 326243186. 1023
20 1. 5958454306%10"" 2. 3937680935x10" 9. 2136133969x%10°
30 4. 5078680582x10%° 6. 6718020873%10%° 2. 602617623%10%
40 1. 2733611522x10>* 1. 9100417283 x10** 7. 3517506121 x10%°
50 3. 596330085x%10% 5. 3953951279 x10% 2. 0766875847 x10*
100 6. 4689530192x10% 9. 7034295289 x10% 6. 4689530192 x10%
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