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ABSTRACT. The Harary index is defined as the sum of reciprocals of distances 
between all the vertex pairs of a connected graph. In this paper we present 
upper bounds on Harary index of unicyclic graphs with a given matching 
number and characterize the extremal graphs for which the upper bounds 
on Harary index are attained. 
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INTRODUCTION 
 
 The Harary index of a graph, denoted by H(G), has been introduced 
in 1993, independently by Ivanciuc et al.[1] and by Plavšić et al.[2] Even 
earlier, the QSAR group in Timisoara, Romania, particularly Ciubotariu [3], 
have used this index to express the decay of interactions between atoms in 
molecules as the distances between them increased. It has been so named 
in the honor of Professor Frank Harary, on the occasion of his 70th birthday. 
The Harary index is defined as 





)(, ),(

1)(
GVvu G vud

GH  

where the summation runs over all unordered pairs of vertices of the graph 
G and ),( vudG  denotes the topological distance between any two vertices 

u and v of G (i.e., the number of edges in a shortest path connecting u and v). 
Mathematical properties and applications of H are reported in refs. [4-14].  
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Chemical applications of this index, in correlating with thermodynamic 
properties or octane number of alkanes, or in discriminating alkane isomers, 
are presented in refs. [5,15-18]. Some new interesting properties of other 
distance-based graph invariants can be seen in refs. [19-21]. 
 Let ),( kGγ be the number of vertex pairs of G lying to each other at 
the distance k. Then, from refs.[8,12] we have: 
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γ
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=     (1) 

All graphs herein considered are finite and simple ones. Let G = (V;E) 
be a graph with the vertex set V (G) and edge set E(G). A connected graph 

G is called a unicyclic graph if )()( GEGV = . Two edges 1e  and 2e  are called 

independent if they do not have a common vertex. A matching of G is a 
subset of E(G) with some pairwise independent edges. For a graph G, the 
matching number )(Gβ  is the maximum cardinality among the independent 

sets of edges in G. For a matching M of a graph G, if a vertex )(GVv∈  is 
incident to an edge of M, then v is said M-saturated. For a graph G, D(G) 
denotes the diameter of G, or the maximum topological distance between 
any two vertices in G. In the following, we denote by nP , nC  and nS  the path 

graph, the cycle graph and the star graph with n vertices, respectively. For 
other notations and terminology in the Graph Theory, the readers may 
consult refs. [22,23].  

Let  ),( mn  be the set of connected unicyclic graphs, of order n and 

having the matching number m. Recently, Ilić et al. [24] have determined 
the tree with the maximal Harary index among all the trees of order n and 
having the matching number m. Du and Zhou [25] determined the extremal 

graph of  ),( mn  with the minimal Wiener index. Inspired by the above 

results, the graphs of  ),( mn , having the maximal Harary index and their 

characterization, will be presented in the following. 
 
 

SOME LEMMAS 
 
As preliminaries, let us introduce some basic lemmas. For a graph G, with 

)(GVv∈ , one defines [12] 
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 For convenience, we will write )(vQG  as )()( vQ GV . Note that the 

function 
1

)(
+

=
x

x
xf  is strictly increasing for 1>x . 

 Let mnU ,  be a unicyclic graph obtained by attaching 12 +− mn pendent 

edges and 2−m  pendent paths, of length 2, to one vertex of the triangle 

3C , as shown in Figure 1. By equality (1), we can obtain 
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For a vertex v of G, the eccentricity ecc(v) is defined as the maximum 
distance from v to any other vertex in G. 

 
Lemma 2.1. Let G be a connected graph of order n > 4, with a 

pendent vertex v adjacent to the vertex u, and let w be a neighbor of u 
different from v. Then 

1 1( ) ( ) ( )
3 6 6 G

n
H G H G v d v− − ≤ + +   (2) 

with the equality holding if and only if ecc(u) = 2. Moreover, if 2)( =udG , then 

7 1 1( ) ( { , }) ( )
12 2 4 G

n
H G H G u v d w− − ≤ + +  (3) 

with the equality holding if and only if ecc(w) = 2. 
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Proof. Considering that v is a pendent vertex of G, we have 
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with the equality holding if and only if ecc(u) = 2. 
When 2)( =udG , we have 
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with the equality holding if and only if ecc(w) = 2. 

Lemma 2.2. [26] Let  ),2( mmG∈ , 3≥m and T be a branch of G 

with the root r. If )(TVu∈  is a pendent vertex closest to the root r, with 

2),( ≥rudG ¸ then u is adjacent to a vertex of degree two. 

Lemma 2.3. [27] Let  ),( mnG∈ , with n > 2m and nCG ≠ . Then, 

there is a maximum matching M and a pendent vertex v of G such that v is 
not M-saturated. 
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Lemma 2.4. [10,13] Let A, X and Y be three connected graphs with 
disjoint vertex sets. Suppose that u, v are two vertices of A, 0v is a vertex of X 

and 0u  is a vertex of Y . Let G be the graph obtained from A, X and Y by 

identifying v with 0v  and u with 0u , respectively. Let *
1G be the graph obtained 

from A, X and Y by identifying three vertices v, 0v  and 0u , and let *
2G  be the 

graph obtained from A, X and Y by identifying three vertices u, 0v  and 0u  

(Figure 2). Then we have: 

)()( *
1 GHGH > or ).()( *

2 GHGH >  
From Lemma 2.4, the following corollary is immediate. 

Corollary 2.1. Let G be a connected graph with )(, GVvu ∈ . Denote 
by G(s;t) the graph obtained by attaching s > 1 pendent vertices to vertex u 
and t > 1 pendent vertices to vertex v. Then, we have 

)())1,1(( GHtsGH >−+ or ).())1,1(( GHtsGH >−+  

Lemma 2.5. [13] Let G be a (connected) graph with a cut vertex w 
such that 1G  and 2G  are two connected subgraphs of G having w as the only 

common vertex and GGG =∪ 21 . Let ii nGV =)(  for 2,1=i . Then 

.
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 Let )1( kn
kC

−  be a graph obtained by attaching kn −  pendent edges to 

a vertex of kC . Based on equality (1), we can claim that )())1(( 1
1

+> kk CHCH , 

for 5≥k . Denote by )1,1(* −− knCk a unicyclic graph obtained by attaching 

one pendent vertex and 1−− kn  pendent vertices, respectively, to two 
adjacent vertices of a cycle kC . 
 

 Lemma 2.6. Let 5≥k  and )1,1(* −− knCk  be a unicyclic graph 

defined as above. Then  

)).1,2(())1,1(( *
1

* −−>−− + knCHknCH kk  

 Proof. To prove this lemma, we first prove that  

))1(())1(( 2
1

−−
+

− > kn
k

kn
k CHCH . 

Note that )1( kn
kC

− is obtained by identifying the unique vertex of degree 3 in 

)1( 1kC  with the center of star 1−−knS , where the new vertex is labeled as 1w  
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and )1( 2
1

−−
+

kn
kC  is obtained by identifying one vertex 1+kC  with the center 

of the star 1−−knS , where the new vertex is labeled as 2w . 

Set ))1(())1(( 2
1

−−
+

− −= kn
k

kn
k CHCHA . So, by Lemma 2.5, we have 
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Thus, considering that )())1(( 1
1

+> kk CHCH , for 5≥k , from above we get 
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as expected. 
 

Assume that the unique vertex of degree 3 in )1,1(* −− knCk  is 1u  

and the unique vertex of degree 3 in )1,2(*
1 −−+ knCk  is 2u . Suppose that 

=−− ))1(( 1kn
kCV  }{\))1,1(( 1

* vknCV k −− and 

}{\))1,1(())1(( 1
*1 vknCVCV k

kn
k −−=−− , where 1v  is adjacent to 1u  in 

)1,1(* −− knCk  and 2v  is adjacent to 2u  in )1,2(*
1 −−+ knCk . Let 

))1,2(())1,1(( *
1

* −−−−−= + knCHknCHB kk . Similarly, by Lemma 2.5, we 

arrive at 
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 From above, we get 
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, thus ending the proof of this lemma. 

 

MAIN RESULTS  
 

In this section, the graph of  ),( mn , with the maximal Harary index, 

will be determined. Before presenting the main results, we first will deal with 
some special cases of this problem. 

When n = 3, there is only one unicyclic graph, which is just the triangle 
C_3, with the matching number 1. There is nothing to prove, in this case. 

Clearly, only 3C  belongs to  )1,(n . Next, we only need to consider the set 

 ),( mn , with 4≥n  and 2≥m . If n = 4, there are exactly two unicyclic 

graphs, 4C  and )1( 13C , which belong to  )2,4( , with ))1(()( 1
34 CHCH = . 

When n = 5, we can easily check that (see ref.[11]) only two graphs nC  and 

)1( 23C  have the maximal Harary index in  )2,5( . From ref. [17] we find that 

the unique graph )1( 3
3

−nC  has the maximal Harary index in  )2,(n , with 6≥n .  

Now we consider the case n = 6. Two graphs, )1(
6G and )2(

6G  are 

shown in Fig. 2. It is not difficult to check that there are only five graphs: 

3,6U , )1( 15C , )1(
6G , )2(

6G  and 6C , in  )3,6( , and 

.103
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16
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1102
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17
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16))1((
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)1(
663,6

1
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=×+×+=

===>

=×+×+=

GHGHCHUH
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 Thus )1( 15C  has the maximal Harary index in  )3,6( . In the following 

we assume that 7≥n and 3≥m . 
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Let  )()1( m  be the set of graphs from  )3,6(  having a pendent 

vertex whose neighbor is of degree two. Also, let )(\)()( )1()2( mmm   = . 

Denote by )1,1,1(5C the graph obtained by attaching three pendent vertices 

to three consecutive vertices in 5C . 
 

Lemma 3.1. Let  )()2( mG∈ , with 4≥m . Then, we have 

)183517(
24
1)( 2 −+≤ mmGH  

with the equality holding if and only if )1,1,1(5CG ≅ . 

Proof. If )1,1,1(5CG ≅ , the equality holds immediately. So it suffices 

to prove that 

)183517(
24
1)( 2 −+< mmGH , when )1,1,1(5CG ≠ . 

For any graph )}1,1,1({\)( 5
)2( CmG ∈ , by Lemma 2.2, we find that 

G is the cycle mC2  or a graph obtained by attaching some pendent vertices 

to some vertices of kC  with 12 −≤≤ mkm . Combining the structure of 

mnU ,  with n = 2m and formula (*), we can easily find 








 −
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24
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 Moreover, for 4≥m , 

2
632)2,(

2

2
−+<= mm

mC mγ , )2(2)3,( 2 −<= mmmC mγ  and 

mC m ≥)4,( 2γ , mmC m =),(, 2γ . 

 Therefore, from (1), we have .
24

183517)(
2

2
−+< mm

CH m  

 
 Now, let us consider the case when G is a graph obtained by 
attaching some pendent vertices to some vertices of kC , with 12 −≤≤ mkm . 

To prove this lemma, we need to look at the following three cases. 
 
 Case 1: k = m. In this case, we can easily find that G is a graph 
obtained by attaching 
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a pendent vertex to each vertex of mC . If m = 4, we can easily check that 

)).11,1(()( 5CHGH <  When 5≥m , we have 
2

633)2,(
2 −+<= mm

mGγ , 

)2()3,(3)3,( −≤+= mmCmG mγγ , ,),4,(2)4,( mCmG γγ +=

=+
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 )2
2

,( m
Gγ .1

2
)

2
,( >


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
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 Therefore, according to (1), we have .
24

183517)(
2 −+< mm

GH  

 Case 2. 221 −≤≤+ mkm . For this case, by Corollary 2.1, we 
claim that any graph G of this type can be changed into a 
graph ).1,1()1,1( −−=−− knCknC kk  

 Considering the equality (1), ))1,12(( −− kmCH k  reaches its maximum 

value when the two vertices of degrees 3 and 12 +− km  are adjacent. We 

denote by *
kC  the type of graph with the maximal Harary index. When m = 4, 

since )1,1,1(5CG ≠ , we have *
6CG ≅ . A simple calculation shows that 

))1,1,1((
12
197

6
97)( 5

*
6 CHCH =<= . In the following, we assume that 5≥m . 

By Lemma 2.6, we claim that the maximum value of )( *
kCH  is attained at k 

= m + 1. Moreover, 
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 Combining the above arguments with the equality (1), we have 

.
24

183517)()(
2

*
1

−+<< +
mm

CHGH m  

Case 3. 2 1k m= − . In this case, we claim that 1
2 1(1 )mG C −≅ . If m = 4, 

it is easy to see that 1
7 5

197( (1 )) 16 ( (1,1,1))
12

H C H C= < = . For 5k ≥ , we 

can find that 
2

1
2 1

3 6( (1 ), 2) 2 1
2m

m m
C mγ −

+ −= + < ,  

1
2 1( (1 ),3) 2 1 ( 2)mC m m mγ − = + < −  and 1

2 1( (1 )) 5mD C m− = ≥ .  

Similarly to the above two cases, we have 
2

1
2 1

17 35 18( (1 )) .
24m

m m
H C −

+ −<  

Thus we completed the proof of this lemma. 

Lemma 3.2. Let (2 , )G m m∈  and v be any vertex in V (G). Then 

( ) 1Gd v m≤ + . 

Proof. There exists a graph (2 , )G m m∈  with a vertex ( )v V G∈ , 

of degree 2s m≥ + . Assume that 1 2, , , sv v v are all the neighbors of v in G. 

Now there are 2 2m s m− ≤ −  edges remained in (2 , )G m m∈ .  

Therefore, ( ) 2 1 1G m mβ ≤ − + = − . This is a contradiction to the fact 

that (2 , )G m m∈ , thus proving this lemma.  

Lemma 3.3. Let (8, 4)G∈ . Then 
197( )
12

H G ≤ , with the equality 

holding if 8,4G U≅  or )1,1,1(5CG ≅ . 

Proof. If (2) (4)G∈ , by Lemma 3.1, we have 
197( )
12

H G ≤  with 

the equality holding if and only if G = C5(1; 1; 1). If (1) (4)G∈ , with a 

pendent vertex ( )v V G∈  and u as the neighbor of v, of degree two, then 

{ , } (6,3)G u v− ∈ . By Lemmas 2.1 and 3.2, we have 

31 1( ) ( { , }) ( )
6 4
31 5( { , })
6 4

GH G H G u v d w

H G u v

≤ − + +

≤ − + +
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with the equality holding if and only if ecc(w) = 2 and ( ) 5Gd w = .  

 Considering the structures of 6,3U , )1( 15C , )1(
6G , )2(

6G  and 6C  (there 

is only 6,3U  with the maximum degree 4), we claim that the above equality 

holds if and only if 8,4G U≅ . The lemma follows immediately. 

In the following, we give a lemma as a starting point for our main 

results. In this lemma, the graph of (10,5) , with the maximum Harary 

index, will be completely characterized. 
 

Lemma 3.4. Let (10,5)G∈ . Then,
97( )
4

H G ≤ with the equality 

holding if and only if 10,5G U≅ . 

 

Proof. By Lemma 3.1, we have 
97( )
4

H G ≤  if (2) (5)G∈ . For any 

graph 
(1) (5)G∈ , from Lemmas 2.1, 3.2 and 3.3, we have  

38 1( ) ( { , }) ( )
6 4

197 38 3 97
12 6 2 4

GH G H G u v d w≤ − + +

≤ + + =
 

with the equality holding if and only 8,4{ , }G u v U− ≅  or )1,1,1(5CG ≅ , ecc(w) 

= 2 and 6)( =wdG , that is, 10,5G U≅ .  

 

 Theorem 3.1. Let (2 , )G m m∈  with 5m ≥ . Then we have 
217 35 18( )
24

+ −< m m
H G   (4) 

with the equality holding in (4) if and only if 2 ,m mG U≅ . 

 
 Proof. We prove this theorem by induction on m. For m = 5, from 
Lemma 3.4, this lemma follows immediately. 

Assume that the result is true for any graphs in (2 2, 1)m m− − , with 

6m ≥ . 
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If (2) ( )G m∈ , then by Lemma 3.1, we have 
217 35 18( )
24

m m
H G

+ −< . If 

(1) ( )G m∈ , with a pendent vertex ( )v V G∈  and u as the neighbor of v, 

of degree two, we can conclude that { , } (2 2, 1)G u v m m− ∈ − − . By 

Lemma 2.1 and the induction hypothesis, it follows that 

2 2

7 3 1( ) ( { , }) ( )
6 4

17( 1) 35( 1) 18 7 3 1 17 35 18
24 6 4 24

G

m
H G H G u v d w

m m m m m m

+≤ − + +

− + − − + + + −≤ + + =
 

with the equalities holding if and only if 2 2, 1{ , } m mG u v U − −− ≅ , ecc(w) = 2 and 

1)( += mwdG ; thus, G is just 2 ,m mU and the theorem is completely proved.  

 Theorem 3.2. Let ( , )G n m∈  with 3
2
n

m≤ ≤ and 7n ≥ .  

Then we have  
2 26 4 14 7 18( )

24
− + + + −< n mn m n m

H G  (5) 

with the equality holding in (5) if and only if 7,3G U≅ or 2
5 (1 )C  for 

( , ) (7,3)n m = ; 8,4G U≅  or 5 (1,1,1)C  for ( , ) (8, 4)n m = ; ,n mG U≅  otherwise. 
 

 Proof. First we define a function 
2 26 4 14 7 18( , ) ,

24
n mn m n m

f n m
− + + + −=  

where ,n m  are all positive integers. In view of formula (*)  we obtain 
2 21 ( ) 6 1 1( , ) ( )( 2) .

22 2 3 4
mn m n m

f n m n n m m
− − + + −= + + − − +  

 
 

 For the cycle nC , we have 12 += mn  or mn 2= . Based on equality 

(1), using a procedure as that followed in the proof of Lemma 3.1, we can 
get ).,()( mnfCH n <  

 For any graph  ),( mnG∈ , with mn 2>  different from nC , by 

Lemma 2.3, there must be a pendent vertex v of G and a maximum matching 

M such that v is not M-saturated in G. Clearly,  ),1( mnvG −∈− . Let u be 

the unique neighbor of v in G. As proved in ref. [25] 1)( +−≤ mnudG . 
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Now we prove this result by induction on n. According to the value 
of m, we divide the discussion into the following three cases. 

 

 Case 1: m = 3. For n = 7,  )3,6(∈− vG . If )1( 15CvG ≅− , we 

have 4)( ≤udG . Then, by Lemma 2.1, it follows that 

3
40

3
2

2
5

6
61)(

6
1

2
5))1(()( 1

5 =++≤++≤ udCHGH G  

with the equalities holding if and only if 4)( =udG  and ecc(u) = 2, that is, 

)1( 25CG ≅ . If )1( 15CvG ≠− , by Lemma 2.1, we have 

3
40

6
5

2
510)(

6
1

2
5)()( =++≤++−≤ udvGHGH G  

with the equalities holding if and only if 3,6UG ≅ , 6C , )1(
6G , or )2(

6G  (Fig. 2), 

5)( =udG  and ecc(u) = 2, which implies 3,7UG ≅ . Thus, we claim that 

.
3
40)( ≤GH  When  ),( mnG∈ , with )3,7(),( =mn , the equality is holding 

if and only if )1( 25CG ≅ ; or 3,7U . 

When n = 8, we get  )3,7(∈− vG . By Lemma 2.1, 

)3,8(1
6
17

3
40)(

6
1

6
17)()( fudvGHGH G =++≤++−≤  

with the equalities holding if and only if 3,7UvG ≅− , 6)( =udG  and ecc(u) = 2, 

i.e., 3,8UG ≅ . Assume that the result holds for all graph  )3,1( −∈ nG  

with 9≥n . By Lemma 2.1 and induction hypothesis, we have 

)3,(
6
2

6
12),1()(

6
1

6
12)()( nf

nn
mnfud

n
vGHGH G =−+++−≤+++−≤  

with the equalities holding if and only if 3,1−≅− nUvG , 2)( −= nudG  and 

ecc(u) = 2, equivalently, 3,nUG ≅ . 

 
 Case 2: m = 4. For n = 8, the result follows from Lemma 3.3. In case 

9=n ,  )4,8(∈− vG . Based on Lemma 2.1, by analogy to the Case 1, we 

have )4,9(1
6
19

12
197)( fGH =++≤  
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with the equality holding if and only if 4,9UG ≅ . Suppose that the result 

holds for any graph  )4,1( −∈− nvG , with 10≥n ; from Lemma 2.1 and 

induction hypothesis, we have  

)4,(
6
3

6
12)4,1()(

6
1

6
12)()( nf

nn
nfud

n
vGHGH G =−+++−≤+++−≤  

with the equalities holding if and only if 4,1−≅− nUvG , 3)( −= nudG  and 

ecc(u) = 2, equivalently, 4,nUG ≅ . 

 
 Case 3: 5≥m . When mn 2= , the result holds from Lemma 3.4. 

Assume the result is true for any graph  )4,1( −∈ nG  with m2≥ . By a 

similar procedure, we obtain 

),(
6

1
6
12)4,1()(

6
1

6
12)()( mnf

mnn
nfud

n
vGHGH G =+−+++−≤+++−≤  

with the equalities holding if and only if mnUvG ,1−≅− , 1)( +−= mnudG  

and ecc(u) = 2, that is, mnUG ,≅ . Thus, the proof of this theorem is completed. 

The cyclomatic number η  of G is defined as )()()( GVGEG −=η  

)(Gω+ , where )(Gω is the number of connected components of G. Denote 

by ),,( mnG η  the set of connected graphs of order n and by m the 

matching number. Clearly, when 0=η , ),,( mnG η  denotes the set of trees 

of order n, of the matching number m; if 1=η , then  ),(),,( mnmnG =η . 

Considering the main results in this paper (for 1=η ) and those in ref. [24] 

(for 0=η ), we naturally ask the following problem: 
 

 Problem 3.1. Can we determine the graph of ),,( mnG η  with the 

maximal Harary index being an integer 2≥η ? 

 Even more difficult is to determine the graph of ),,( mnG η  with the 

minimal Harary index, even for the case 0=η . Therefore, we will end this 
paper with the following interesting problem: 
 
 Problem 3.2. Which graph of ),,( mnG η  has the minimal Harary 

index for a given integer 0≥η ?   
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