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ABSTRACT. Let G  be a simple graph. The Harary index of G  is defined 
as the sum of reciprocal distances.Dendrimer nanostars form a new group 
of macromolecules that show photon funnels just like artificial antennas 
and also are resistant to photo-bleaching. In this paper we compute the 
Harary index for an infinite family of dendrimer nanostars.  
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INTRODUCTION 

A simple graph ),(= EVG  is a finite nonempty set )(GV  of objects 
called vertices, together with a (possibly empty) set )(GE  of unordered pairs of 

distinct vertices of G called edges. In chemical graphs, the vertices of the 
graph correspond to the atoms of the molecule, and the edges represent 
the chemical bonds. 

In theoretical chemistry, molecular structure descriptors (also called 
topological indices) are used for modeling physico-chemical, pharmacologic, 
toxicologic, biological and other properties of chemical compounds [1,2]. There 
exist several types of such indices, especially those based on graph theoretical 
distances. In 1993 Plavsic et al. [3] and Ivanciuc et al. [4] independently 
introduced a new topological index, named Harary index, in honor of Frank 
Harary on the occasion of his 70th birthday. This topological index is 
derived from the reciprocal distance matrix and is related to a number of 
interesting physico-chemical properties [5-9].  

The Harary index is defined as the half-sum of the elements in the 
reciprocal distance matrix (also called the Harary matrix [10]): 
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where ),( vud  denotes the distance between vertices u  and v  and the sum 
goes over all the pairs of vertices. 

The Wiener index of a connected graph G is denoted by )(GW  and 
is defined as the sum of distances between all pairs of vertices in G [11]: 
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Dendrimers are a new class of polymeric materials. They are highly 
branched, mono-disperse macromolecules. The structure of these materials 
has a great impact on their physical and chemical properties. As a result of 
their unique behavior, dendrimers are suitable for a wide range of biomedical 
and industrial applications. Recently some people investigated the mathematical 
properties of these nanostructures [12-22]. 

In the next section, we present a method to compute the Harary 
index for an infinite family of dendrimer nanostars. 
 
 
MAIN RESULTS 

In this section we shall compute the Harary index for a family of 
dendrimer nanostars. We consider the dendrimer grown n  steps denoted 

][1 nD . Figure 1 shows [4]1D . Note that there are three edges between each 
two hexagons in this dendrimer. 

 
 

 
 

Figure 1. Dendrimer [4]1D of generation 1-4. 
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 Recall that in computer science, a binary tree is a tree data structure in 
which each node has at most two child nodes, usually distinguished as “left” 
and “right”. Nodes with children are parent nodes, and child nodes may contain 
references to their parents. Outside the tree, there is often a reference to 
the “root” node (the ancestor of all nodes), if it exists. Any node in the data 
structure can be reached by starting at root node and repeatedly following 
references to either the left or right child. 
 

 
Figure 2. Labeled hexagon. 

 

We label each vertices of hexagon with three pendant edges as 
shown in Figure 2. Let us denote the first hexagon (root) of ][1 nD  by 

symbol OWe also denote the right child and the left child of O  by (1)O  

and (2)O , respectively. Let )...( 11 kxxO  be a dendrimer which has grown 
until 1)( k -th stage. As was shown above, we shall denote its left and right 

child by 1)...( 11 kxxO  and 2)...( 11 kxxO , respectively. Now suppose that 

},,6,{0,1,, bayx  . By ))...(( 1 ixxOx , we mean the vertex x  in hexagon 

)...( 1 ixxO . We shall compute the distance of two arbitrary vertices 

))...(( 1 ixxOx  and ))...(( 1 jyyOy . 

 Theorem 1. The distance of two arbitrary vertices ))...(( 1 ixxOx  and 

))...(( 1 jyyOy  is obtained as follows:  

 1. 







2;=4;5,6)(),(
1,=4;5,6)(),(

=))...((),((
1

1
1 yjydbxd

yjydaxd
yyOyOxd j  

 2. )))...((),((=))......(()),...((( 1111 jkjkkk xxOyOxdxxxxOyxxOxd  . 

 3. 6)25(,6)(,6)(=))...(()),...((( 11  rijydxdyyOyxxOxd jk , 

where r  is defined as }:{= ii yximinr  .  

 Proof. It is straightforward and follows from the construction of ][1 nD .  
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Now we try to compute the Harary index of ][1 nD . Consider the 

following polynomial as Harary polynomial of which value at 1=x  gives the 
Harary index of a graph.  
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The following theorem gives the coefficient of ix  of )],[( 1 xnDH  for 

51  i . Our method led us to develop an approach for computing the 

coefficient ix  in )],[( 1 xnDH  for 6i  (see Theorem 4). 

 Theorem 2. 

 1. The coefficient of x  in )],[( 1 xnDH  is 92 4 n . 

 2. The coefficient of 2x  in )],[( 1 xnDH  is 8212  n . 

 3. The coefficient of 3x  in )],[( 1 xnDH  is 
3

22227  n

. 

 4. The coefficient of 4x  in )],[( 1 xnDH  is 
4
22223  n

. 

 5. The coefficient of 5x  in )],[( 1 xnDH  is 
5
1)28(2 n

. 

 Proof. 

1. The coefficient of x  in )],[( 1 xnDH  is the number of edges of 

][1 nD . It is easy to see that the number of its edges is 92 4 n . 

2. To evaluate the coefficient of 2x , we compute the number of pair 
vertices which have distance 2 and are in different hexagons. So we have to 
consider two cases of Part (i) of Theorem 1, that is 2=45,6)(),(  jydaxd  

or 2=45,6)(),(  jydbxd . In the both cases 1=j . In the first case 

{0,1}=,6)}(),,({ ydaxd  or for the second case {0,1}=,6)}(),,({ ydbxd . 
Obviously 6=y  is one of the answers. For this case there are two cases (1,6)  

and (5,6) . Also if 1=,6)(yd , then 3=y  and ax =  or bx = . Therefore we 

have four solutions: (1)))),6((1((2))),),3((((1)),),3((( OOOObOOa  and 

(2)))),6((5( OO . Now by considering the Part (ii) of the Theorem 1 all of the 
pair vertices of distance 2 are: 
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2)))...()),6(...((5(2))),...()),3(...(((
1))),...()),6(...((1(1))),...()),3(...(((

1111

1111

kkkk

kkkk

xxOxxOxxOxxOb
xxOxxOxxOxxOa

1)(1  nk .  

Therefore the number of solutions are 1)4(2 n . By the other hand, there 

are 12 pair vertices of distance 2 in any hexagon, and so the coefficient of 2x  is 

8212=
2

)8(21)12(21)4(2=))8(2)2...212(11)(4(2
2
1 1   n

nnn
nnn

 

3. The proof of part (iii), (iv), and (v) are similar to proof of part(ii).  

 Theorem 3.  

 1. The diameter of ][1 nD  is 410 n . 2. The radius of ][1 nD  is 45 n . 

 Proof. 

1. It is obvious that the most distances between two vertices of this graph 
are between )...( 1 nxxOx  and )...( 1 nyyOy , where 11 yx   and 0== yx . 
By Theorem 1(iii) we have  

410=6)2)5((2(0,6)2=)),...(),0,...((0 11  nndyyOxxOd nn . 

 2. Note that the radius of a graph G  is )}(|),({=)( GVyyxdmaxminGr yx  . 

This minimum occurs when Ox 6=  and the maximum of 
45=])}[(|)(6,{ 1  nnDVyyd  and this occurs when ))...(0= 1 nxxOy   

by Theorem 1(i).  

Now we shall compute the coefficient of lx  in lx
l

xnDH 
1=))],[( 1 , where 

6l .We need the following lemma, of which proof can be obtained directly 
by considering all the possibilities. 

 Lemma 1. Let ayx ,,  and 6 be vertices of hexagons of ][1 nD  with 
the positions shown in Figure 2. Then we have the following table:  

 
Case  Equation  No. of solutions 

1 4=,6)(),( ydaxd   13 

2 4=,6)(,6)( ydxd   14 

3 0=,6)(),( ydaxd   1 

4 5=,6)(),( ydaxd   13 

5 5=,6)(,6)( ydxd   14 

6 6=,6)(),( ydaxd   18 

7 1=,6)(,6)( ydxd   2 

8 6=,6)(,6)( ydxd   16 
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Case  Equation  No. of solutions 
9 2=,6)(),( ydaxd   5 

10 7=,6)(,6)( ydxd   12 

11 2=,6)(,6)( ydxd   5 

12 7=,6)(,6)( ydxd   12 

13 3=,6)(),( ydaxd   8 

14 8=,6)(),( ydaxd   9 

15 3=,6)(,6)( ydxd   8 

16 8=,6)(,6)( ydxd   9 

 

 Proof. It is straightforward and is obtained directly by considering all 
the possibilities.  

Here we state the main theorem of this paper which gives the coefficients 

of lx  in )],[( 1 xnDH  for 6l . First we use the following notations:  
 

qnA 22= 1  , 
11 22=   qnB , 21 22=   qnC , 

1)2(2= 2
32

0=  


 rqnD
qn

r , 2)2(2= 2
22

0=  


 rqnE
qn

r . 
 

 Theorem 4. Suppose that the Harary polynomial of ][1 nD  is  

l
l

n
l

vud
Vvu xa

vud
x

vud
xnDH  


410

1=
),(

,1 ),(
1=

),(
1=)],[( .  

  

Then for every 6l , we have 
 






















.5)(4;898
5)(3;512512

5)(2;21618
5)(1;1413
,5)(0;1413

=

modlifEDB
modlifEDBA

modlifEDA
modlifDCB

modlifDA

al  

 

 Proof. We prove the theorem for case )50( modl  . Let ql 5= , for some 
Nq  Therefore we have qjydaxd 5=45,6)(),(   and so 4=,6)(),( ydaxd  . 

By Lemma 1 there are 13 cases. By solving the equation of Theorem 1 (i) we 
will have jq = , and by Part (ii) of this theorem the number of all possibilities 
are  

.13=)213(2=)22(1213 1 Aqnqnq    
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Now by considering the part (iii) of Theorem 1, we have to find the 
number of solutions of qrjiydxd 5=6)25(,6)(,6)(  . When 4=,6)(,6)( ydxd   
this equation has solution, and this occurs for 14 different cases by Lemma 1. 
With substituting in this equation we have 22=  rqji , where njir  , . 

This equation is equivalent to 2=  qji , ),(0 rnji   or equivalent to 

222=  qrnji , where i   and j   are non-negative. By inclusion-exclusion 
principle the number of solutions of this equation is 

 

1).2(2=
2
32

0=







rqnD
qn

r
 

 

Since there are 14 cases for this part, we have DAal 1413=   and 
the proof is complete.  

We have the following result: 

 Corollary 1. The Harary index of ][1 nD  is 

l
l

n
l

n

nnnn

xa
l

nDH

 







410
6=

4
1

11))(28(2
5
1

22)2(23
4
122)2(27

3
116)2(24

2
19)(2=])[(

,  

where la  is obtained in Theorem 4. 
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