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ABSTRACT. The m-order connectivity index is an extension of the Randic 
(simple) connectivity index that counts the connectivity of all paths of length 
m inG. A dendrimer is ahyperbranchedmolecule built up from branched units 
called monomers. In this paper, the 2-order, 3-order and 4-order connectivity 
indices of an infinite family of PAMAM dendrimers are computed. 
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INTRODUCTION 

A simple graph G = (V,E) is a finite nonempty set V(G) of objects 
called vertices together with a (possibly empty) set E(G) of unordered pairs 
of distinct vertices of G called edges. In chemical graphs, the vertices of the 
graph represent the atoms of the molecule and the edges represent the 
chemical bonds. 

A single number that characterizes the molecular graph is called a 
graph theoretical invariant or topological index. Among the many topological 
indices considered in chemical graph theory, only a few have been found 
noteworthy in practical applications, connectivity index being one of them. 
The molecular connectivity index  provides a quantitative assessment of 
branching of molecules. Randic (1975) first addressed the problem of relating 
the physical properties of alkanes to the degree of branching across an 
isomeric series [1]. Kier and Hall (1986) extended   index to higher orders 
and introduced modifications to account for heteroatoms [2]. 

Molecular connectivity indices are the most popular class of indices 
(Trinajastic [3]). They have been used in a wide spectrum of correlating 
applications, including physicochemical properties (e.g. boiling point, solubility, 
partition coefficient etc.) and biological (activities such as antifungal effect, 
an esthetic effect, enzyme inhibition etc.) (Murray et al. [4], Kier and Hall [5]). 
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Let G  be a simple connected graph of order n. For an integer 1m , 
the m-order connectivity index of an organic molecule whose molecule graph 
G  is defined as 
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where 1 1... mi i   runs over all paths of length m in G and id denote the degree 

of vertex iv , and in particular, 2-, 3- and 4-order connectivity indices are defined 

as follows: 
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Dendrimers are hyper-branched macromolecules with a rigorously 
tailored architecture. They can be synthesized, in a controlled manner, 
either by a divergent or a convergent procedure. Dendrimers have gained a 
wide range of applications in supra-molecular chemistry, particularly in host 
guest reactions and self-assembly processes. Their applications in chemistry, 
biology and nanoscience are unlimited.  

Recently, some researchers investigated the m-order connectivity 
index and m-sum connectivity index for some families of dendrimers, where 
m = 2 and 3 (see [6-12]).  

Note that one of the first studies on the topology of dendrimers was 
performed by Diudea and Katona [13]. 

In this paper, we will study the 2-order, 3-orderand 4-order connectivity 
indices of an infinite family of PAMAM dendrimers. 
 
 
RESULTS AND DISCUSSIONS 

In this section, we shall compute 2-order, 3-orderand 4-order 
connectivity indices of a class of dendrimers, namely, PAMAM dendrimers 
by construction of dendrimer generations nG  which has grown n stages. 

We denote simply this graph by 1[ ]PD n . Figure 1 shows generations 3G  has 

grown 3 stages. 
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Figure 1. PAMAM dendrimer of generation nG  has grown 3 stages, denoted by 1[ ]PD n  

 
Below we give our main results. 

Theorem 1. Let 0Nn . The second-order connectivity index of 1[ ]PD n  
is computed as follows  

2
1( [ ])PD n  1 [(3 2 10 3 4 6 6)

4
    1(3 2 12 3 4 6 3)(2 2)]n     

Proof. For this structure, the core means that the number of stages 
equal to zero. Firstly, we compute 2

1( [0]).PD  Let 
1 2 3i i id denote the number 

of 2-paths whose three consecutive vertices are of degree 1 2 3, , ,i i i  respectively. 

By the same way, we use 
1 2 3

( )n
i i id  to mean 

1 2 3i i id  in n th  stages. Particularly, 

1 2 3 3 2 1

( ) ( )n n
i i i i i id d . By Figure 2, one can verify that 

(0)
122 3d  , (0)

222 3d  , (0)
223 9,d  (0)

232 6d  , (0)
231 6d  . 

It is easy to see that in the core of this structure as vertices are labeled 
in Figure 2, we have (0)

122 3d   which is 
9 8 7

(0) 3i i id  , (0)
222 3d   which is 

6 7 8

(0) 3i i id  , 
(0)
223 9,d   which are (

3 2 1

(0) 3i i id   + 
2 3 4

(0) 3i i id   + 
7 6 5

(0) 3i i id  ), (0)
232 6d  which are 

(
2 1 2

(0) 3i i id   + 
3 4 6

(0) 3i i id  ) and (0)
231 6d  which are (

3 4 5

(0) 3i i id   + 
6 4 5

(0) 3i i id  ). 
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Figure 2. The core of PAMAM dendrimer PD1[0] 
 

Therefore, we have that  

2
1

3 3( [0 ])
1 2 2 2 2 2

PD   
   

9 6 6
2 2 3 2 3 2 2 3 1

 
     

 

1 [(3 2 10 3 4 6 6)
4

     

Secondly, we construct the relation between 2
1( [ ])PD n   

and 2
1( [ 1])PD n   for n ≥ 1. 

By simple reduction, we have 

( ) ( 1) 1
122 122 3 2 ,n n nd d     ( ) ( 1) 1

222 222 6 2 ,n n nd d      

        
( ) ( 1) 1
223 223 21 2 ,n n nd d     ( ) ( 1) 1

232 232 15 2 ,n n nd d      

      
( ) ( 1) 1
231 231 12 2n n nd d     , 

and for any 1 2 3( ) (122), (222), (223), (232), (231)i i i  , we have 
1 2 3

( ) 0.n
i i id   

Therefore, 
2 2

1 1( [ ]) ( [ 1])PD n PD n    3 6(
1 2 2 2 2 2


     

121 15 12 ) 2
2 2 3 2 3 2 2 3 1

n    
     

 

2
1( [ 1])PD n   1 (3 2 12 3 4 6 3) 2

4
n    . 

From above recursion formula, we have  

2 2
1 1( [ ]) ( [ 1])PD n PD n    1 (3 2 12 3 4 6 3) 2

4
n     

2 1
1

1( [ 2]) (3 2 12 3 4 6 3)(2 2 )
4

n nPD n       
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  
2

1( [0])PD  1 21 (3 2 12 3 4 6 3)(2 2 ... 2 2)
4

n n      
 

Hence, 

2
1( [ ])PD n  1 [(3 2 10 3 4 6 6)

4
    1(3 2 12 3 4 6 3)(2 2)]n     

The proof is now complete.    
 

Theorem 2. Let 0Nn . The third-order connectivity index of 1[ ]PD n  is 

computed as follows  

3
1( [ ])PD n  1 [(3 2 4 3 5 6 2)

4
    (3 2 8 3 12 6 4)(2 1)]n     

Proof. We compute 3
1( [0])PD  and let 

1 2 3 4i i i id
 
denote the number of 

m3-paths whose four consecutive vertices are of degree 1 2 3 4, , , ,i i i i  respectively. 

By the same way, we use 
1 2 3 4

( )n
i i i id  to mean 

1 2 3 4i i i id  in n th  stages. Particularly, 

1 2 3 4 4 3 2 1

( ) ( )n n
i i i i i i i id d . 

In Figure 2, one can verify that 

(0)
1222 3d  , (0)

2223 3d  , (0 )
2231 6d  , (0)

2232 12d  , (0)
3223 3d  . 

We can see that in the core of this structure as vertices are labeled 
in Figure 2, we have (0)

1222 3d   which is 
9 8 7 6

(0) 3i i i id  , (0)
2223 3d   which is 

8 7 6 4

(0) 3i i i id  , 
(0 )
2231 6d   which are (

7 6 4 5

(0) 3i i i id   + 
2 3 4 5

(0) 3i i i id  ), (0)
2232 12d   which are (

2 1 2 3

(0) 6i i i id   + 

2 3 4 6

(0) 3i i i id  +
7 6 4 3

(0) 3i i i id  ) and (0)
3223 3d   which is 

1 2 3 4

(0) 3i i i id  . 

Therefore, we have that  

3
1

3 3( [0])
1 2 2 2 2 2 2 3

PD   
       

6 12 3
2 2 3 1 2 2 3 2 3 2 2 3

 
        

 

1 (3 2 4 3 5 6 2)
4

     

Now, we construct the relation between 3
1( [ ])PD n  

and 3
1( [ 1])PD n   for 1n   
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By simple reduction, we have 

( ) ( 1) 1
1222 1222 3 2 ,n n nd d     ( ) ( 1) 1

2223 2223 6 2 ,n n nd d      
( ) ( 1) 1
2231 2231 12 2n n nd d     ( ) ( 1) 1

2232 2232, 30 2 ,n n nd d      
( ) ( 1) 1
3223 3223 6 2n n nd d      

and for any 1 2 3 4( ) (1222), (2223), (2231), (2232), (3223)i i i i   we have 
1 2 3 4

( ) 0.n
i i i id   

Thus, 

3 3
1 1( [ ]) ( [ 1])PD n PD n    3 6(

1 2 2 2 2 2 2 3


       
112 30 6 ) 2

2 2 3 1 2 2 3 2 3 2 2 3
n    

        
 

3
1( [ 1])PD n   1 (3 2 8 3 12 6 4) 2

8
n     

3 1
1

1( [ 2]) (3 2 8 3 12 6 4)(2 2 )
8

n nPD n       
 

  
3

1( [0])PD  1 21 (3 2 8 3 12 6 4)(2 2 ... 2 2)
8

n n      
 

Hence, 

3
1( [ ])PD n  1 [(3 2 4 3 5 6 2)

4
    (3 2 8 3 12 6 4)(2 1)]n     

The proof is now complete.    
 

Theorem 3. Let 0Nn . The fourth-order connectivity index of 1[ ]PD n  
is computed as follows  

4
1( [ ])PD n  1 [(3 2 3 3 2 6 2)

4
    (5 2 9 3 3 6 4)(2 1)]n     

Proof. Similar to that of Theorems 1 and 2, we compute 4
1( [0])PD  

and let 
1 2 3 4 5i i i i id denote the number of 4-paths whose five consecutive vertices 

are of degree 1 2 3 4 5, , , , ,i i i i i  respectively. We use 
1 2 3 4 5

( )n
i i i i id  to mean 

1 2 3 4 5i i i i id  in 

n th  stages. Particularly, 
1 2 3 4 5 5 4 3 2 1

( ) ( )n n
i i i i i i i i i id d . By Figure 2, one can verify that 

(0)
12223 3d  , (0)

22231 3d  , (0)
22232 3d  , (0)

22322 6d  , (0)
23223 9d  , (0)

13223 3d  , (0)
32223 0d  . 
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Also we can see that in the core of this structure as vertices are 
labeled in Figure 2, we have (0)

12223 3d   which is 
9 8 7 6 4

(0) 3i i i i id  , (0)
22231 3d   which is 

8 7 6 4 5

(0) 3i i i i id  , (0)
22232 3d   which is 

8 7 6 4 3

(0) 3i i i i id  , (0)
22322 6d   which are (

3 2 1 2 3

(0) 3i i i i id   + 

2 3 4 6 7

(0) 3i i i i id  ), (0)
23223 9d   which are (

2 1 2 3 4

(0) 6i i i i id   + 
6 4 3 2 1

(0) 3i i i i id  ) and (0)
13223 3d   

which is 
5 4 3 2 1

(0) 3i i i i id  . 

Therefore, 

4
1

3 3( [0 ])
1 2 2 2 3 2 2 2 3 1

PD   
         

3 6
2 2 2 3 2 2 2 3 2 2


       

 

9 3
2 3 2 2 3 1 3 2 2 3

 
       

 

1 [(3 2 3 3 2 6 2)
4

    . 

We now study the relation between 4
1( [ ])PD n  and 4

1( [ 1])PD n   

for n ≥ 1, that is 
( ) ( 1) 1

12223 12223 3 2 ,n n nd d     ( ) ( 1) 1
22231 22231 6 2 ,n n nd d      

( ) ( 1) 1
22232 22232 12 2 ,n n nd d     ( ) ( 1) 1

22322 22322 15 2n n nd d     , 
( ) ( 1) 1
23223 23223 12 2 ,n n nd d     ( ) ( 1) 1

13223 13223 6 2 ,n n nd d      
( ) ( 1) 1
32223 32223 3 2n n nd d      

and for any 1 2 3 4 5( ) (12223), (22231), (22232), (22322), (23223)i i i i i  ,(13223), 

(32223), we have 
1 2 3 4 5

( ) 0.n
i i i i id   

Thus, 
4 4

1 1( [ ]) ( [ 1])PD n PD n     
3 6(

1 2 2 2 3 2 2 2 3 1


         
12 15

2 2 2 3 2 2 2 3 2 2
 

         
12 6

2 3 2 2 3 1 3 2 2 3
 

         
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13 ) 2
3 2 2 2 3

n  
   

 

4
1( [ 1])PD n   1 (5 2 9 3 3 6 4) 2

8
n     

4 1
1

1( [ 2]) (5 2 9 3 3 6 4)(2 2 )
8

n nPD n       
 

  
4

1( [0])PD  1 21 (5 2 9 3 3 6 4)(2 2 ... 2 2)
8

n n        

Hence, 

4
1( [ ])PD n  1 [(3 2 3 3 2 6 2)

4
    (5 2 9 3 3 6 4)(2 1)]n     

The proof is now complete. 
 
CONCLUSION 

In this paper, we have discussed the 2-order, 3-order and 4-order 
connectivity indices of the PAMAM dendrimers. We believe that the results in 
this paper can be extended to the study of m-order connectivity index of PAMAM 
dendrimers where m ≥ 5. Another direction is to investigate the m-order 
connectivity index of PAMAM dendrimers and other families of dendrimers, 
in general.  
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