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ABSTRACT. In process industries objectives as improving performance, 
reducing pollutant emission or predicting feasible operating conditions requires 
analysis based on complicated mathematical models and procedures. For 
quickly but reliable assessments besides of cumbersome approaches of 
potential support are so-called metamodeling techniques. The paper presents 
a metamodeling procedure belonging to artificial intelligence in a minimax 
approach able to assess predictions, trend and correlations to establish a 
safety-operating domain. The proposed procedure was compared with a robust 
total least squares regression based on principal component analysis. Numerical 
experiments are related to dependencies between the level of pollution and 
operating parameters of a thermo power station.  

Keywords: metamodeling, minimax probability, regression, classification, 
prediction, harmful level of pollution, operating parameters. 

INTRODUCTION  

Many industrial activities produce pollutant emissions that affect the 
quality of environment and human health. Improving process quality and 
performance, predicting trends or feasible operating domain are important 
targets in process industries. Generally solving such problems requires 
complicated models, expensive analysis and simulation together with 
cumbersome correlations of many operating parameters and pollutant 
emissions concentration. In order to reach a high level of accuracy often 
these analyses becomes computational burden. To address such a challenge, 
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approximation-empirical or metamodeling techniques are often used. These 
models of reduced order developed for expensive simulation process in 
order to improve the overall computation efficiency are also known as 
“surrogate” models [1-3]. A metamodel replaces a true functional relationship 

 ng :  and know values yi = g(xi) at some selected input variables 

usually called sampling points (X = {x1, . . . , xm}, Xn), by an empirical 
mathematical expression  xg~  that is much easier to evaluate. Thus, 
“surrogates” of the objectives functions can replace the original functional 
relationship as,      xxgxg  ~ . Based on correlated input-output values, 
parameters of the model are fit to approximate the original data in a best 
possible way. Among the well-known metamodeling techniques, it can be 
mentioned: response surface, radial basis function, Gaussian process also 
known as kriging, high dimensional model representation, artificial neural 
network, genetic algorithms, support vector machine and many others. The 
main goal of this paper is to implement a metamodel-based approach able to 
represent the behaviour of pollution level according some operating parameters 
into a unit plant. For unity and generality the level of pollution due to the 
pollutant emission will be assess by the harmful level of pollution. The 
metamodel based on artificial intelligence methods in a minimax manner is 
able to assess predictions, trends and dependencies between pollutant emission 
concentrations and operating parameters. Much more the metamodel can 
be used into a first step for approximation of optimal domain in which a unit 
plant can be safely operated. Comparative numerical experiments with a 
powerful total least squares regression based on principal component 
analysis (TLS-PCA) are presented. The numerical examples are related to 
some pollutant emission concentrations expressed by a harmful level of 
pollution and some operating parameters of an industrial thermo power 
station. The implementation of the procedure and numerical experiments were 
developed as a user-friendly computer application in MATLAB language. The 
results point out the ability of proposed procedure at least into: (1) predicting 
parameters of interest to facilitate monitoring purposes, (2) approximating 
trends and correlated dependencies between pollutant emission concentrations 
and operating parameters to ensure feasible performance. 
 

RESULTS AND DISCUSION 

Theoretical foundation 

The core of procedure is based on a novel type of pattern recognition 
machine developed in a minimax manner. The procedure casts both regression 
(numerical values as outputs) and classification problems (class labels as 
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outputs) into a unified technique. Basic principles of these types of classification 
approach named minimax probability machine and regression approach 
named minimax probability machine regression were previously published 
[4-5]. Some depicted and proved advantages of the implemented procedure 
over many regression procedures must be mentioned: (a) avoids the specific 
problems such as over-fitting and local minima, (b) relative less influenced 
by outliers, (c) provides an explicit direct upper bound on the probability of 
misclassification of new data, without making any specific distribution assumptions 
(d) good generalisation ability. Detailed principles also a basic flowchart of 
implemented procedure and others were previously presented [6-8]. In the 
present paper only fundamentals principles will be presented.  

For predictive purposes, a minimax regression approach was built 
as in Strohmann and. Grudic [5] by maximising the minimum probability of 
future predictions to be within some bound () of the true regression function. 
Starting from some unknown regression function formally expressed as  
f : Rd R  and  

   zff y        (1) 

the task is to construct an approximation for y as ŷ such that for any   

z Rd , )(ˆŷ zf .       (2) 
To avoid some mathematical limitations based on a kernel formulation 

minimax probability machine regression model will approximate this function 
not into a real Euclidean space but into a space of high dimension, named 
as feature space, by: 

 
k
bzizKizfff  ),()(ˆŷˆ     (3) 

Here )Φ()Φ(),( zizz
i
zK   in the feature space is so-called kernel 

function satisfying Mercer’s conditions. By this kernel function we simply 
map data from a real Euclidean space into a higher dimensional space 
named as feature space through a non-linear mapping function (…). In this 
context, a kernel represents a legitimate inner product into a high dimensional 
feature space, that is basically a Hilbert space. The others, i are weighting 
coefficients and ‘bk’ offset of the minimax regression model, obtained as 
outputs of the minimax probability machine regression from the learning 
data. The nonlinear regression function (eq.3) is only a formal basic function 
formulation. Because (…) is done implicitly, all related computations would 
be carried by kernel function into a high dimensional feature space. Instead 
of ‘d’ features now ‘n’ features represent inputs vectors and the kernel map 
evaluates at all of the other training inputs. Generating two classes that are 
obtained by shifting the dependent variable  the regression problem was 
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reduce to a binary classification problem into features space. The regression 
surface is interpreted as being the boundary that separates the two classes, 
successfully and wrongly predicted. Into this feature space, a linear classifier-
surface between the two classes of points corresponds to a high non-linear 
decision-hyper plane into original Euclidean input space. Therefore, a linear 
regression into the features space corresponds to a cumbersome and high 
non-linear regression into a real Euclidean space.  

If a binary classifier is built to separate the two sets of points 
(successfully and wrongly predicted), then finding a crossing point ŷ  
at where the classifier separates these classes for some inputs named as  
z = (z1,..,zd), is equivalent to finding the output of the regression model for 
these inputs for any zi R d. Basically as was stated in minimax probability 
machine by Lanckriet [4] into a binary classification problem of z random 
vectors, with z1 and z2 denoting random vectors from each of two classes 
as 1Class1z and 2Class2z , a hyper plane can separates these points, 

with maximal probability in respect to all distributions having mentioned 

means 2,1 zz and covariance matrices  2,1 zz . This hyperplane  

  RRwzwzw  bandwherebbH nT }0{\,),(  (4) 

that separates the two classes of points with maximal probability with 
respect to all distributions must to obey the conditions: 
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Related to a minimax probability machine approach the classifier 
must to minimise this misclassification probability by an optimal separating 
hyperplane, named minimax probabilistic decision hyperplane. The implemented 
procedure operates on two data sets: (1) training (learning) data to establish 
the best model-choosing the best mapping function (…) and (2) testing to 
evaluate the errors. 

The procedure is conducted in a crude manner, without outliers’ 
detection. To ensure a good distribution of the data the simulations were 
realised based on data cyclic randomly divided into a number of distinct 
learning and testing subsets. The errors were estimated by testing rather 
than by calculation during the training steps (learning and testing) in order 
to build and estimate the model. To carry out the most basic testing method 
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(simple testing) a random percentage of the database (10-30%) is set aside 
and used in testing step. The implementation was developed as a user-
friendly computer application in MATLAB software and works in multiple 
cyclic steps (“k” cyclic experiments). The performance of procedure was 
investigated based on the following model validation metrics: 
 relative error between the predicted (outputs) and the corresponding 

test t values 

[%]100
predictedY

testYpredictedY
RE 


 









 )(
.  (6) 

 simple equivalent linear dependency between the predicted (outputs) 
and the corresponding test values:  

btestYapredictedY  ,      (7) 

where a and b represents the slope and intercept of the equivalent linear 
dependency model, respectively. Better predictions, means a index close to 
unity and b index close to zero value. The performance criterions are evaluated 
with all values reconverted into the original real Euclidian Rd space. To 
obtain generalisation the best models will be establish after a number of “k” 
cyclic experiments (simulations). Formally, the best model means model 
that performs best. It involves best kernel function, kernel parameters and 
outputs. Basically as previously mentioned Lanckriet, et al. [4] one typically 
has to choose manually or determine it by tenfold cross validation. This 
time we preferred a simple-empirical principle for setting the type of the 
kernel function. The best model over these “k” cyclic simulations and the 
corresponding output values emerged from the procedure was chosen as 
the best model. Long random trials (k > 100) do not get improved accuracy 
and predictions that are more reliable. According some statements [9,10] 
we limit the trials to k =  100. The proper size and selection of the training set 
(randomly divided into learning and test subsets) is very important to increase 
the performance of the algorithm. Regarding this, there are no an agreed 
approached concerning the dimension and the selection of the training set. 
However, it is a commonly agreed idea, which states that training set must be 
sufficiently large compared with the number of features/variables.  
 

Case study 

This section presents a numerical application of proposed metamodeling 
technique, related to pollutant emission concentrations and operating parameters 
of a thermo power station. The acquired data consists of a multivariate set 
of pollutant emission concentrations measured on the top of an industrial stack of 
a thermo power station and operating parameters. The statistics of this data set 
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are presented in Table 1. The data set contains 64 daily measured values of 
operating parameters as: temperature of gaseous releases (TG) coke content of C, 
S, humidity, coke specific caloric power and pollutant emission concentrations 
for SO2, NO, NOX, and CO. A general level of pollution from a gaseous release 
source may be done reporting current values of pollutant emission to the critical 
concentration CR representing the value of the 'dangerous concentration' of 
particular interest. This general level of pollution named harmful level of pollution 
(HLP) were assessed by the following basic relation [7]: 

.
n

1 aiCiCHLP       (8) 

where, Ci current pollutant concentration, Cai admissible/critical pollutant 
concentration and n the number of considered pollutants. 

 
Table 1. The main values of pollutant emissions and operating parameters 

Parameters (operating conditions) 

Percentage content of coke analyse   
TG 
[oC] 

C 
[] 

S 
[%] 

Humidity 
[%] 

Coke specific 
caloric power 

[kcal/kg] 
Range 269  136 20.8  19 2.88  2.32 26.1  23 18751740 
Mean value 200.1 20.3 2.50 24.8 1799 
Standard deviation 55.18 0.43 0.112 0.78 36.34 

Pollutant emission concentrations [ppm] 

 SO2 NO NOX CO 
Range 726145 13454 20877 39970 
Mean value 391.7 97.4 130 152.6 
Standard deviation 158.5 22.23 34.52 73 
Critical concentration  400 140 230 200 

The critical values of polluting emissions are reported to industrial pollutant emissions for solid 
fuel elements in burning type II installations according to Romanian HG- 541/2003 

According eqs.(8) an accepted level of pollution means HLP close to 
unity. Numerical application was developed according with this harmful level of 
pollution (HLP). After the model is generated on random training database, it is 
used to predict on random test database. In other words it is random validated. 
This time the kernel type that yields to the best performance (eqs.6-7) was an 
exponential radial basis function with standard width kernel ( ) tuned using 
10-fold cross validation. The results were compared with those obtained by 
a well-known total least squares regression based on principal component 
analysis (TLS-PCA). To ensure a real comparison between these procedures, 
they were conducted to work on the same learn and test subsets. Table 2 
presents the main conditions and results of procedures for the best model 
obtained after cyclic simulations. 
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Table 2. The main results and conditions of predictions for best metamodel 

 TLS-PCA Minimax metamodel 

Criterions of performance on test data set 

Range of relative errors RE (eq.6) -14040 [%]  
based on Fig. 2 

-5,3770 [%]  
based on Fig. 1 

Coefficients of equivalent linear 
dependency (eq.7) 

a = 0.754 
b = 1.115  
based on Fig. 2 

a = 1 
b = -0,029  
based on Fig. 1 

Criterions of performance on unseen-validation data set 

Range of relative errors RE (eq.6) -144141 [%] -5,37710 [%]  
Coefficients of equivalent linear 
dependency (eq.7) 

a = 1.918 
b = -1.746  

a = 0.992 
b = 0,028  

Formal kernel functions – exponential radial basis function  














 22

2
exp),( 

jijiK xxxx  

 
 

Results related to test data reveal relative good performance for 
both procedures. Predicted and test harmful level of pollution (HLP) are in 
reasonable agreement because range of relative errors of both procedures 
presents a good adjustment. However TLS-PCA depicts a high range of 
relative errors than our procedure (Table 2 and Fig. 1-2). Results of predictions 
on unseen-validation data set (Table 2) are a little worse than those 
previously reported. Our metamodel retrieves this drawback by the range of 
relative errors less than 10% which suggest good generalisation capability. 
The dependency between predicted and corresponding test values illustrated 
based on simple equivalent linear dependency reveals also reasonable 
accurate results. Certainties of predicted values are established in a 95 % 
confidence interval. Regarding the robust regression technique, the results 
(Table 2) suggest a poor generalisation capability. By these reasons, only our 
metamodel was utilised into new correlated predictions to assess dependencies 
between the harmful level of pollution (HLP) and some operating parameters 
of a thermo power station (Fig. 3-4). Until now, all predictions reflecting 
dependencies and trends are correlated. Based on proved generalisation 
capability of our metamodel we extend a well-known principle of artificial 
neuronal network as in [11] to examine the effect of any individual input of 
interest on the output variable. This means to establish an uncorrelated 
functional dependency. This may be very difficult in reality or in some cases 
impossible to do in other way. 
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Figure 1. The performance of metamodel on test set.  
red  - simulated values; blue  - test/predicted values;  

green o – ideal hypothetical simple equivalent linear dependency 
 

2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Test  values 

P
re

d
ic

te
d

 v
al

u
es

  

 

Figure 2. The performance of robust regression technique on test set.  
red  - simulated values; blue  - test/predicted values;  

green o – ideal hypothetical simple equivalent linear dependency 
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Figure 3. Correlated predicted dependencies between HLF and (C, S) content. 
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Figure 4. Correlated predicted dependencies between HLF and (TG, S) content. 
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Figure 5. Uncorrelated functional dependency between harmful level  

of pollution (HLP) and some functional parameters. 
blue o – predicted values of HLP; red  - polynomial fitted values. 
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Analysing correlated dependencies (Fig. 3-4) between harmful level 
of pollution (HLP) and some operating parameters we can identify that 
correlated dependencies of TG, S produce a level of pollution higher than those 
due to C, S. Based on these correlated dependencies and others many 
times it is possible to adjust some operational parameters to decrease the 
dangerous level of pollution. 

Regarding the effect of an individual input of interest on the harmful 
level of pollution the solution involves the use of the best metamodel (that 
preserves the best non-linear interactions between all variables) to perform 
virtual experiments. These virtual experiments predict outputs variations 
(Fig. 5) with any individual input variable (keeping the values of the other input 
variables at constant values within their range-usually at their nominal-mean 
values in the training data). This time inputs of interest were chosen operating 
parameters as: coke content of C (Fig. 5a) and temperature of gaseous releases 
TG (Fig. 5b). As a result, our metamodeling procedure can be promoted as 
a valid procedure for simple monitoring activities or quickly assessment of 
feasible operational parameters of a thermo power station into a reasonable 
level of pollution. It is clear by the values of harmful level of pollution (HLP) 
that basically thermo power station works in a wrong way. Therefore future 
developments based on optimisation tasks need to establish a feasible and 
safety operating domain. 
 

CONCLUSIONS 

The paper presents the feasibility of applying a novel metamodeling 
procedure to estimate dependencies of concentration of pollutant emissions 
generalised into a harmful level of pollution and operational parameters of a 
thermo power station without the relational physics or analytic being explicitly 
or known. By principle this metamodeling procedure, represents a pattern 
recognition and classification task. The procedure casts both regression 
and classification problems into a unified technique able to predict trends, 
correlations and various dependencies. The procedure performs highly complex 
mappings into high dimensional space on nonlinearly related data, by inferring 
subtle relationships between input and output parameters. Used it with an 
appropriate policy related to environmental protection it could leads to a 
drop from industrial pollutant emissions and hence to decrease the atmospheric 
level of pollution.  

This procedure can be a promising alternative for engineers dealing 
with risk pollution to work out optimal feasible operating conditions according 
to the regulations and beyond this one to other engineering domains. Because 
of these, we consider opportune to promote our procedure as predictive 
tool towards real engineering applications at least as a simple preliminary 
investigation before any cumbersome operational optimisation of process.  
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