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ABSTRACT. In this research, we give some theoretical results for linear [݊ ]-
Pentacene, V-Pentacenic nanotube, H-Pentacenic nanotube and V-Pentacenic 
nanotori by using topological indices. The main result of this paper is represented 
by the formulas for calculating values of Zagreb indices, Zagreb coindices 
and connectivity indices. These formulas make it possible to correlate the 
chemical structure of Nanostructures with a large amount of information 
about their physical features. 
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INTRODUCTION  

The chemical graph theory is an important branch of mathematical 
chemistry. A chemical graph is a model of a chemical system, used to 
characterize the interactions among its components: atoms, bonds, groups 
of atoms or molecules. A structural formula of a chemical compound can be 
represented by a molecular graph, its vertices being atoms while edges 
correspond to covalent bonds; hydrogen atoms are often omitted. A single 
number, representing a chemical structure, in graph-theoretical terms, is 
called a topological index. Topological indices were successfully employed 
in developing a suitable correlation between chemical structure and biological 
activity by translating chemical structures into numerical descriptors. In the 
past years, nanostructures involving carbon have been the focus of an 
intense research activity which is driven to a large extent by the quest for 
new materials with specific applications. Carbon nanotubes are nano-objects 
that have raised great expectations in a number of different applications, 
including field emission, energy storage, molecular electronics, atomic force 
microscopy, and many others. The use of topological indices as structural 
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descriptors is important in the proper and optimal nanostructure design. The 
present authors, [1-6], derived some exact formulae for topological indices of 
some graphs. 

The main purpose of this paper is to compute some topological indices 
for families of linear [n]-Pentacene, lattice of V-Pentacenic nanotube, H-
Pentacenic nanotube and V-Pentacenic nanotori. The paper is organized as 
follows: In the next sections we give the necessary definitions. Section 3 
contains the results; the paper is completed with the list of references. 
 
DEFINITIONS 

In this section, we gathered some notations as well as preliminary 
notions which will be needed for the rest of the paper. Let ܩ = (ܸ,  be a (ܧ
simple molecular graph without directed and multiple edges and without loops, 
the vertex and edge sets of it being represented by ܸ = ܧ and (ܩ)ܸ =  ,(ܩ)ܧ
respectively. The vertices in ܩ are connected by an edge if there exists an 
edge ݒݑ ∈ ,ݑ		such that ܩ in	ݒ and ݑ connecting the vertices (ܩ)ܧ ݒ ∈  .(ܩ)ܸ
The complement of G, denoted by Gഥ, is a simple graph on the same set of 
vertices ܸ(ܩ) in which two vertices ݑ and ݒ		are adjacent, i.e., connected by an 
edge ݒݑ, if and only if they are not adjacent in ܩ. Hence, ݒݑ ∈ (ܩ̅)ܧ ⟺ ݒݑ ∉  .(ܩ)ܧ
The degree of	ݑ ∈  adjacent ܩ		denoted by ݀௨, is the number of vertices in ,(ܩ)ܸ
to ݑ. There are several topological indices defined in the literature. 

The Zagreb indices have been introduced more than thirty years ago 
by Gutman and Trinajstić [7]. For a (molecular) graph ܩ, the first Zagreb index is 
equal to the sum of the squares of the vertex degrees; the second Zagreb 
index equals to the sum of the products of pair adjacent vertex degrees. They 
are defined as: (ܩ)1ܯ = ෍ (ܩ)ܸ∋ݑ2ݑ݀ , (ܩ)2ܯ = ෍ ݑ݀) × (ܩ)ܧ∋ݒݑ(ݒ݀ , 
respectively. In fact, one can rewrite the first Zagreb index as: (ܩ)1ܯ = ෍ ݑ݀) + (ܩ)ܧ∋ݒݑ(ݒ݀ . 

The first and second Zagreb polynomials of a graph G are defined as: ܩ)1ܯ, (ݔ = ෍ (ܩ)ܧ∋ݒݑݔ
(ݒା݀ݑ݀) , ,ܩ)2ܯ										 (ݔ = ෍ (ܩ)ܧ∋ݒݑݔ

 ,(ݒ݀×ݑ݀)
where ݔ is a dummy variable. For more studies about polynomials in graph 
theory you can see [8-12]. 
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On the other hand, for a graph 	G, the modified second Zagreb index 
is defined as [13]: ܯ ∗ଶ(ܩ) = ෍ 1݀௨ × ݀௩௨௩∈ா(ீ)  

The third Zagreb index was first introduced by Fath-Tabar [14]. This 
index is defined as follows: ܯଷ(ܩ) = ෍ |݀௨ − ݀௩|.௨௩∈ா(ீ)  

Recently, Ashrafi et al. [15] have defined, respectively, the first 
Zagreb coindex and the second Zagreb coindex as follows: 1ܯതതതത(ܩ) = ෍ ݑ݀) + (ܩ)ܧ∌ݒݑ,(ݒ݀ (ܩ)2തതതതܯ							 = ෍ ݑ݀) × ݀௩).(ܩ)ܧ∌ݒݑ  

Zagreb coindices are dependent on the degrees of non-adjacent 
vertices and thereby quantifying a possible influence of remote vertex pairs 
to the molecular properties. The reader should note that Zagreb coindices of ܩ are not Zagreb indices of ̅ܩ; the defining sums run over	(ܩ̅)ܧ, but the 
degrees are with respect to ܩ. 
 Among molecular descriptors, topological connectivity indices are 
very important and many of them have found applications in modeling 
chemical, pharmaceutical and other properties of the molecules. The 
product-connectivity index, also called Randić index of a graph ܩ and is 
defined as: ߯(ܩ) = ෍ 1ඥ݀௨݀௩௨௩∈ா(ீ) . 

This topological index was first proposed by Randić [16]. Zhou and 
Trinajstić [17] proposed another connectivity index, named the Sum-
connectivity index. This index is defined as: ܺ(ܩ) = ෍ 1ඥ݀௨ + ݀௩௨௩∈ா(ீ) . 

Estrada et al. [18] introduced atom-bond connectivity index, which it 
has been applied in studies on the stability of alkanes and the strain energy 
of cycloalkanes. This index is defined as follows: 
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(ܩ)ܥܤܣ = ෍ ඨ݀௨ + ݀௩ − 2݀௨݀௩௨௩∈ா(ீ) . 
Vukičević and Furtula [19] proposed a topological index named the 

geometric-arithmetic index. This index is defined as: (ܩ)ܣܩ = ෍ 2ඥ݀௨݀௩݀௨ + ݀௩௨௩∈ா(ீ) . 
 
RESULTS AND DISCUSSION 

The use of topological and connectivity indices as structural descriptors 
is important in proper and optimal nanostructure design. Pentacene is a 
polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. 
This highly conjugated compound is an organic semiconductor. The compound 
generates excitons upon absorption of ultra-violet (UV) or visible light; this 
makes it very sensitive to oxidation. For this reason, this compound, which is 
a purple powder, slowly degrades upon exposure to air and light. In Figure1, 
one can see the linear [n]-Pentacene. 
 

Figure 1.The molecular graph of a linear [n]-Pentacene. 
 

Before we proceed to our main results, we will express the lemma 
which will be useful later. 
 

Lemma 1.Topological indices of [n]-Pentacene (Figure 1), hereafter 
denoted T=T[n], are calculated from the molecular graph, considering the 
vertex degree and the number of edges. Obviously, for ݊ = 1, |ܸ| = 22  
and |ܧ| = 26. There exist 3 type of edges, namely [ܧଵ] = [ଶܧ] ,ݒݑ = [ଷܧ] and ݕݔ = ܾܽ. On the other hand ݀௨ = ݀௩ = 2, ݀௔ = ݀௕ = 3 and ݀௫ = 2, 	݀௬ = 3. 
By enumerating these edges there are	6, 16 and 4	edges of types 1, 2	and 3, 
respectively. Now, it is easy to see that ܶ = ܶ[݊] has 22݊ vertices and 28݊ − 2 
edges. Similar to the above argument, the edge set of graph can be dividing 
into three partitions: ܧଵ(ܶ),  .ଷ(ܶ).There are three type of edges, eܧ ଶ(ܶ) andܧ
g. edges with endpoints 2[ܧଵ], edges with endpoints 2,3[ܧଶ] and edges with 
endpoints 3[ܧଷ]. By using an algebraic method we obtain |ܧଵ| = 6, |ଶܧ| =20݊ − 4 and |ܧଷ| = 8݊ − 4. 
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Table 1. Type and number of edges in the molecular graph ܶ 
,ݑ݀)  ݒݑ where (ݒ݀ ∈ ଵܧ Total Number of Edges (ܶ)ܧ = [2,2] ଶܧ6 = [2,3] 20݊ − ଷܧ4 = [3,3] 8݊ − 4
 

Theorem 2. Let ܶ  be a linear [݊]-Pentacene; the Zagreb polynomials are: 
 

i. 1ܯ(ܶ, (ݔ = (8݊ − 6ݔ(4 + (20݊ − 5ݔ(4 +  .4ݔ6
ii. 2ܯ(ܶ, (ݔ = (8݊ − 9ݔ(4 + (20݊ − 6ݔ(4 +  .4ݔ6

 
Proof. By definition of the first and second Zagreb polynomials and 

partition of edges described in Lemma 1, we can see that: 
 

i. ܯଵ(ܶ, (ݔ = ∑ (்)௨௩∈ா	ݔ (ௗೠାௗೡ) = ∑ ௨௩∈[୉భ]	ݔ ସ + ∑ ௨௩∈[୉మ]	ݔ ହ + ∑ ௨௩∈[୉య]	ݔ ଺ = ସݔ6 	+(20݊ − ହݔ(4 + (8݊ − .଺ݔ(4   
ii. ܯଶ(ܶ, (ݔ = ∑ (்)௨௩∈ா	ݔ (ௗೠ×ௗೡ) = ∑ ௨௩∈[୉భ]	ݔ ସ + ∑ ௨௩∈[୉మ]	ݔ ଺ + ∑ ௨௩∈[୉య]	ݔ ଽ = ସݔ6	 +(20݊ − ଺ݔ(4 + (8݊ − .ଽݔ(4  

Theorem 3. Let ܶ be a linear [݊]-Pentacene; the topological indices 
are calculated from the corresponding polynomials as the first derivative, in ݔ = (ܶ)1ܯ :1 = 148݊ − (ܶ)2ܯ .20 = 192݊ − 36. 

 

Proof. 
The first Zagreb index will be the first derivative of ܯଵ(ܶ,  evaluated (ݔ

at ݔ = (ܶ)1ܯ  :1 = ݔ߲(ݔ,ܶ)1ܯ߲ ቚ1=ݔ = 6 × (8݊ − 4) + 5 × (20݊ − 4) + 4 × (6) = 148݊ − 20. 

Also, the second Zagreb index will be the first derivative of ܯଶ(ܶ,   (ݔ
evaluated at 	ݔ = (ܶ)2ܯ :1 = ݔ߲(ݔ,ܶ)2ܯ߲ ቚ1=ݔ = 9 × (8݊ − 4) + 6 × (20݊ − 4) + 4 × (6) = 192݊ − 36. 

Given the edge partitions in the linear [݊]-Pentacene (Lemma 1) we 
can prove the following theorem: 
 



NAJMEH SOLEIMANI, MOHAMMAD JAVAD NIKMEHR, HAMID AGHA TAVALLAEE 
 
 

 
144 

Theorem 4.Consider the graph ܶ of a linear [݊]-Pentacene. The 
following topological indices can be calculated: 

 

i. ܯଶ∗(ܶ) = ∑ ଵௗೠ×ௗೡ = ∑ ଵସ௨௩∈[ாభ]௨௩∈ா(்) + ∑ ଵ଺௨௩∈[ாమ] + ∑ ଵଽ =௨௩∈[ாయ] ଵସ × 6 + ଵ଺ ×(20݊	 − 	4) + ଵଽ × (8݊	 − 	4) = ଷଽ଼ ݊ + ଻ଵ଼. 
ii. ܯଷ(ܶ) = ∑ |݀௨ − ݀௩| = ∑ |2 − 3| =௨௩∈[ாమ]௨௩∈ா(்) 20݊	– 	4. 

iii. ߯(ܶ) = ∑ ଵඥௗೠௗೡ௨௩∈ா(்) = ∑ ଵ√ସ௨௩∈[ாభ] + ∑ ଵ√଺௨௩∈[ாమ] + ∑ ଵ√ଽ =௨௩∈[ாయ] ଵ√ସ × 6 + ଵ√଺ ×(20݊	 − 	4) + ଵ√ଽ × (8݊	 − 	4) = ቀଵ଴√଺ା଼ଷ ቁ ݊ + ቀହିଶ√଺ଷ ቁ. 
iv. ܺ(ܶ) = ∑ ଵඥௗೠାௗೡ௨௩∈ா(்) = ∑ ଵ√ସ௨௩∈[ாభ] + ∑ ଵ√ହ௨௩∈[ாమ] + ∑ ଵ√଺ =௨௩∈[ாయ] ଵ√ସ × 6 + ଵ√ହ ×(20݊	 − 	4) + ଵ√଺ × (8݊	 − 	4) = ቀ4√5 + ସ√଺ଷ ቁ ݊ + ቀ3 − ସ√ହହ − ଶ√଺ଷ ቁ. 
v. ܥܤܣ(ܶ) = ∑ ටௗೠାௗೡିଶௗೠௗೡ௨௩∈ா(்) = ∑ ටଶସ௨௩∈[ாభ] + ∑ ටଷ଺௨௩∈[ாమ] + ∑ ටସଽ		௨௩∈[ாయ] = ටଶସ × 6 +ටଷ଺ × (20݊	 − 	4) + ටସଽ	 × (8݊	 − 	4) = ቀଵ଺ାଷ଴√ଶଷ ቁ ݊ + ቀଷ√ଶି଼ଷ ቁ.   

vi. ܣܩ(ܶ) = ∑ ଶඥௗೠௗೡௗೠାௗೡ௨௩∈ா(்) = ∑ ଶ√ସସ௨௩∈[ாభ] + ∑ ଶ√଺ହ௨௩∈[ாమ] + ∑ ଶ√ଽ଺	 =௨௩∈[ாయ] ଶ√ସସ × 6 + ଶ√଺ହ ×(20݊	 − 	4) + ଶ√ଽ଺	 × (8݊	 − 	4) = ൫8 + 8√6൯݊ + ቀ2 − ଼√଺ହ ቁ.		 
 

Lemma 5. [15] Let 	ܩ be a simple graph with ݊ vertices. Then 
 

i. ܯଵതതതത(ܩ) = ݊)|(ܩ)ܧ|2 − 1) −  .(ܩ)ଵܯ
ii. ܯଶതതതത(ܩ) = ଶ|(ܩ)ܧ|2 − (ܩ)ଶܯ − ଵଶܯଵ(ܩ). 

 
Theorem 6. The first and second Zagreb coindices of a linear  

[݊]-Pentacene are computed as: 
 

i. ܯଵതതതത(ܶ) = 1232݊ଶ − 292݊ + 24. 
ii. ܯଶതതതത(ܶ) = 1568݊ଶ − 490݊ + 54. 

 
Proof. By applying Lemma 1 and Lemma 5 we have the proof. 

 

The 2-dimensional lattices of V-Pentacenic nanotube (denoted by ܨ = ,݌]ܨ ܭ H-Pentacenic nanotube (denoted by ,([ݍ = ,݌]ܭ  and V-Pentacenic ([ݍ
nanotori (denoted by ܮ = ,݌]ܮ  ,the readers can see in Figures 2, 3 and 4 ([ݍ
respectability.  
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Figure 2.The 2-D graph lattice of ܨ = ,݌]ܨ ݌ with [ݍ = 2 and ݍ = 6. 
 

 
 

Figure 3.The 2-D graph lattice of ܭ = ,݌]ܭ ݌ with [ݍ = 2 and ݍ = 6. 
 

 
 

Figure 4.The 2-D graph lattice of ܮ = ,݌]ܮ ݌	 with [ݍ = 2 and ݍ = 7.  
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In order to provide a unified approach to the results discussed in 
this paper, we express the following lemma. 

Lemma 7. It holds that: 

Table 2. Type and number of vertices and edges  
in the molecular graphs F, K and L. 

Nanostructure |ࡱ| |ࡱ| |ࢂ૚| |ࡱ૛| |ࡱ૜| 	ݍ݌33 ݍ݌22 ࡲ − ݌5 0 ݌20 ݍ݌33 − ݍ݌33 ݍ݌22 ࡷ	 ݌25 − ݍ2 ݍ2 ݍ4 ݍ݌33 − ݍ݌33 ݍ݌22 ࡸ ݍ8 0 0  ݍ݌33

 

 

Proof. We apply similar reasoning as in Lemma 1 to calculate the 

quantities of |ܸ|, ,|ଵܧ| ,ܨ ଷ| of Nanostructuresܧ| ଶ| andܧ|  .ܮ  and ܭ

Theorem 8. The first, second, modified second and third Zagreb 
indices of Nanostructures are computed as: 
 

 
Nanostructure 
 

 ૚ࡹ 
 ૛ࡹ 

∗૛ࡹ   
ݍ݌198 ࡲ	 ૜ࡹ  − ݍ݌297 ݌50 − 113 ݌105 ݍ݌ +  ݌59
ݍ݌198 ࡷ	 ݌20 − ݍ݌297 ݍ20 − 113 ݍ40 ݍ݌ +  ݌518
113 ݍ݌297 ݍ݌198 ࡸ ݍ4  ݍ݌
0 

 

Proof. We just apply Lemma 7 and the proof of Theorem 4. 

Theorem 9.The first and second Zagreb coindices of Nanostructures 
are calculated as: 

Nanostruc-
ture 

 ૚തതതതതࡹ 

ଶݍଶ݌1452 ࡲ	 ૛തതതതതࡹ  − ݍଶ݌220 − ݍ݌264 + ଶݍଶ݌2178 ݌60 − ݍଶ݌660 + ଶ݌50 − ݍ݌396 + ଶݍଶ݌1452 ࡷ	 ݌130 − ଶݍ݌88 − ݍ݌264 + ଶݍଶ݌2178 ݍ24 − ଶݍ݌264 − ݍ݌396 + ଶݍଶ݌1452 ࡸ ݍ58 − ଶݍଶ݌2178 ݍ݌264 −  ݍ݌396
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Proof. The proof is obtained exactly from Lemma 5, Lemma 7 and 
Theorem 8. 
 Finally, we calculate the Randić index, Sum-connectivity index, atom-
bond connectivity index and geometric-arithmetic index of Nanostructures by 
use an algebraic method. The next results are proven like Theorem 4 therefore, 
we omit the proofs. 
 

Theorem 10. The Product and Sum-connectivity indices are computed as: 
 

 

Nanostructure 
 ࣑ 

ݍ݌11 ࡲ	 ࢄ  + ቆ10√6 − 253 ቇ݌ 
11√62 ݍ݌ + ቆ120√5 − 125√630 ቇ݌ 	ݍ݌11 ࡷ + ቆ2√6 − 53 ቇݍ 
11√62 ݍ݌ + ቆ30 + 24√5 − 40√630 ቇ 62√11 ݍ݌11 ࡸ ݍ  ݍ݌

 
Theorem 11. The atom-bond connectivity index and geometric-

arithmetic index are computed as: 
 

 

Nanostructure 
 ࡯࡮࡭ 

ݍ݌22 ࡲ	 ࡭ࡳ  + ൬10√2 − 503 ൰ ݍ݌33 ݌ + ൫8√6 − 25൯݌ 	ݍ݌22 ࡷ + ൬3√2 − 163 ൰ ݍ݌33 ݍ + ቆ8√65 − 6ቇݍ݌33 ݍ݌22 ࡸ ݍ 

 
We end this section with some examples. 

 

Example 12. Let ܨ =  	be a lattice with 308 atoms and 452 [2,7]ܨ
chemical bonds. Then one can see that  ܯଵ(ܨ) = 2672, (ܨ)ଶܯ		 = ܯ			,3948 ∗ଶ(ܨ) = (ܨ)ଷܯ		݀݊ܽ		52.44 = 40.	 
 

Example 13. Let ܮ =  be a nanotube with 308 atoms and 462 [2,7]ܮ
chemical bonds. Then one can see that ߯(ܮ) = 154  and  ܺ(ܮ) = 188.611. 

Example 14. Let ܨ =  be a nanotube with 330 atoms and 480 [2,6]ܨ
chemical bonds. Then one can see that (ܨ)ܥܤܣ = 258.951. 
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Example 15. Let ܭ =  be a nanotube with 264  atoms and 384 [2,6]ܭ
chemical bonds. Then one can see that (ܭ)ܣܩ = 257.456. 
 
 
CONCLUSIONS 

Among topological descriptors, topological indices are very important 
and they have a prominent role in chemistry. We have mentioned here some 
theoretical results about the Zagreb and conectivity indices of linear [݊]-Pentacene, 
vertical and horizontal Pentacenic nanotube and nanotori. 
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