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ABSTRACT. Topological symmetry is referred to the maximum possible 
symmetry achievable by a given molecular structure; it can be performed 
either by permutations on the adjacency matrix or by calculating the values of 
some topological indices. The equivalence classes of vertices/atoms of the 
multi-shell nanostructures under study were solved by using a topological 
index computed on the layer matrix of atom surrounding rings and compared 
with the results of matrix permutation. A centrality order of vertices in multi-
shell clusters is given. The design of nanostructures was performed by map 
operations as implemented in our original CVNET and Nano Studio software 
programs. 
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INTRODUCTION 

 
Molecular structures show various types of geometrical symmetry [1-

4]. Geometrical symmetry is reflected in several molecular properties, which 
are dependent on the spatial structure of molecules. Molecular topology 
reveals a topological symmetry (i.e., constitutional symmetry), defined in terms 
of connectivity and expresses equivalence relationships among elements of 
graph: vertices, bonds, faces or larger subgraphs. 
 Using the notions of the Group action [3], in which every element of the 
group acts like as a onetoone mapping, the group G is said to act on a set X 
when there is a function φ such that  : G  X X and for any element x  X, 
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there exists: (g, φ(h,x)) = (gh,x), for all g,hG, with (e,x) = x, e being the 
identity element of G. The mapping  is called a group action while the set 
{(gx) | g G} is called the orbit of x. For a permutation  on n objects, the 
permutation matrix is an nn matrix P, with elements xij = 1 if i = (j) and 0 
otherwise. For any permutation  and  on n objects, PP = P, while the set 
of all permutation matrices is a group isomorphic to the symmetry group Sn on 
n symbols. A permutation   of the vertices of a graph H(V,E) (V being the set 
of vertices and E the set of edges in H) belongs to an automorphism group G if 
one satisfies P

tAP = A, where A is the adjacency matrix of the graph H. 
Given Aut(H) = {1, …, m}, the matrix SG = [sij], where sij = i(j) is called a 
solution matrix for H and its calculation will provide the automorphism group of 
H. 

Given a graph H(V,E) and the automorphism group Aut(H), two 
vertices, i, jV are called equivalent if {(ij) | i,jAut(H)}, in other words, they 
belong to the same orbit of automorphisms. 

Suppose v1, v2,...,vm are m disjoint automorphic partitions of the set of 
vertices V(H), then: 1 2 ...v v vmV V V V     and 

i jv vV V  . 

Let now consider a vertex invariant, In = In1, In2,...,Inm, which assigns a 
value Ini to the vertex i. Two vertices i and j of a molecular graph (with vertices 
meaning the atoms and edges the bonds in the molecule) belong to the same 
invariant class IC if Ini = Inj. The partitioning in classes of vertices/atoms leads 
to m classes, with v1, v2,...vm atoms in each class; such a partitioning may differ 
from the orbits of automorphism i.e. classes of equivalence, since no vertex 
invariant is known so far to always discriminate two non-equivalent vertices 
in any graph. The classes of vertices are eventually ordered according to 
some rules. 

A given binary relation ~ on a set A is said to be an equivalence 
relation if and only if it is: reflexive(x ~ x); symmetric ( xyyx ~~  ) and 

transitive ( zxzyandyx ~~~  ).  
It is worthy to mention that topological symmetry equals the maximum 

geometrical symmetry a molecular graph can have. 
 A layer matrix [5] is built up on a layer partition of a vertex i in the graph 
G(V,E): 
  ( ) { ( ) , [0, ] ( ) }j i j ivG i G i j ecc and v G i d j      

where ecci is the eccentricity of i (i.e., the largest distance from i to the other 
vertices of G). The entries in a layer matrix, LM, collect the vertex property pv 
(a topological, chemical, or physical property) for all the vertices v belonging to 
the layer G(i)j:  
  

( )
[ ]

j

ij
v G i

vp


 LM ,  

for vertices located at distance j from vertex i. The matrix LM is defined as 
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LM (G) = { [LM]ij; iV(G ); j  [0, d(G)] } 
 

where d(G) is the diameter of the graph. The dimensions of the matrix is 
N×(d(G)+1); the zero-distance column is just the column of vertex 
properties.The most simple and essential layer matrix is the counting property 
(i.e., the existence of a vertex in a given position / at a given distance is 
counted by 1, and zero, otherwise). In the following, as a property, the count of 
rings R around each vertex is considered, the layer matrix being LR. 
 Layer matrices are used to derive the indices of centrality C(LM), that 
quantify the centrality of vertices and finally the inside centrality of a graph 

  
2 1

1/ ( )2

1
( )

i i
ecc ecck

i ik
k

C




 
  
 
LM LM  

where ecci is the eccentricity of i. 
 
 
RESULTS AND DISCUSSION 
 
Design of multi-shell cages 
 

The cages under study represent 3D-tessellations, recently developed 
by Diudea [1], achieved by map operations [6-8], as implemented by the 
original software CVNET [9].  

In building the cluster C750, the sequence of operations is as follows: 
TRS(P4(C60))_330; S2(C60)_420; TRS(P4(C60))@S2(C60)_750 (Figure 1). 

The structure TRS(P4(C60))@S2(C60)_750 = C60((C20)60)_750 is a “spongy” 
one, with the central hollow of exact topology of TRS(P4(C60))_330. It is a C20-
tessellation: formally, every point in the graph of C60(Ih) is changed by a cage 
C20; notation C60((C20)60) means 60×(C20) within the topology of C60(Ih). The 
joining of the two halves was made by our original software Nano Studio [10]. 

Cluster C408 was made by all-point truncation of the Diudea’s cluster 
Tr(Diu45)_408, where Diu45=(IcoP@IcoP12)_45. It is the intersection of 
12×Tr(IcoP)_84 (related to Samson’s cluster_104), the core being the 
13neTr(IcoP)_84 (Figure 2). 
 
Topological symmetry 

 

Topological symmetry is referred to the maximum possible symmetry 
achievable by a given molecular structure; it can be performed either by 
permutations on the adjacency matrix [1-3] or by calculating the value of some 
topological indices [1-4]. In the following tables, the equivalence classes of 
vertices/atoms are presented in their descending centrality, calculated on the 
layer matrix of surrounding rings RL. The atom type, eg. 3^3.5^2.6^4 reads: 
R3×3; R5×2; R6×4, R3 being a triangle, R5 a pentagon and R6 a hexagon. 
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The symmetry for the icosahedral structures in Figures 1 and 2 was 
computed by the GAP software program as being 

C2×A5 = Ih; |Ih|=120. 

It confirmed the equivalence classed established by the centrality 
index (Tables 1 and 2). 

 
C60((C20)60)_750 

TRS(P4(C60))@(S2(C60)420)_750 
 

   
C60 TRS(P4(C60))_330 S2(C60)_420 

 
Figure 1. C750 and its substructures 

 

 
Table 1. C750: Automorphism group = C2 × A5 = Ih;|Ih| = 120 (cf. GAP permutations). 

Equivalence classes of atoms in the descending order of their centrality cf. LR matrix. 
 

Class Centrality signature No. Elements Vertex degree Atom type 
1 0.0425537487829127 60 4 5^5 
2 0.0425405656366799 30 4 5^5 
3 0.0408741428983785 60 3 5^3 
4 0.0403249632533878 60 4 5^6 
5 0.0403215210989583 60 4 5^5.6 
6 0.0403184110690464 60 4 5^5.6 
7 0.0380980964599947 60 4 5^5 
8 0.0380776127196794 60 4 5^5 
9 0.0380525586272046 60 4 5^5 
10 0.0363966020960237 60 3 5^3 
11 0.0363899446618803 60 3 5^3 
12 0.0363398403991418 120 3 5^3 
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Tr(IcoP)84@((Tr(IcoP)84)12_408 
 

(Ico@(TT20)@(Ico12;TT20;TT30)@(Py5;TT5)12_408 
Tr(Diu45)_408 

 

  
IcoP_13 Tr(IcoP)_84 Diu_45=IcoP@IcoP12_45 

 

Figure 2. C408 and its substructures 
 
 
 

Table 2. C408: Automorphism group = C2 × A5 = Ih; |Ih| = 120 (cf. GAP permutations). 
Equivalence classes of atoms in the descending order of their centrality cf. LR matrix. 

 

Class Centrality signature No. Elements Vertex degree Atom type 
1 0.0825432266953615 12 6 3^5.5^5.6^5 
2 0.0723127280340924 12 6 3^5.5^5.6^5 
3 0.064639289864084 60 6 3^5.5^5.6^5 
4 0.0580357622307322 60 6 3^5.5^5.6^5 
5 0.0572358681133143 12 6 3^5.5^5.6^5 
6 0.0564467194639707 60 6 3^5.5^2.6^5 
7 0.0552836553218085 60 5 3^3.5^2.6^4 
8 0.0512081941907237 12 6 3^5.6^5 
9 0.0505895569851173 60 4 3^2.5.6^3 
10 0.0467456474901417 60 4 3^2.5.6^3 
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COMPUTATIONAL DETAILS 
 

The multi-shell cages C750 and C408, Figure 1, were built up on 
computer by using CVNET [9] software program and their topology analysed. 
The vertices were partitioned in classes function of the surrounding rings 
and then by their centrality index. The calculations were made by Nano-
Studio [10]. The automorphism data for both these structures were calculated 
by the GAP (Groups, Algorithms and Programming) program.  

 
CONCLUSION 

 

Classes of equivalence of vertices/atoms of the multi-shell icosahedral 
nanostructures were solved by using the Centrality topological index, 
computed on the layer matrix of all rings around atoms and confirmed by the 
results of matrix permutation. Future work will analyze the equivalence classes 
of edges/ bonds and faces/rings by transforming the actual cages in their 
medial and dual graphs, respectively. 
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