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ABSTRACT. The edge version of geometric–arithmetic index of graphs is 
introduced based on the end-vertex degrees of edges of their line graphs. 
In this paper we compute this index for product graphs n mP P  and 

n mp C , and a dendrimer nanostar nD . 
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1. INTRODUCTION 
 

A single number that can be used to characterize some properties of 
molecular graphs is called a topological index. There are numerous topological 
descriptors that have found applications in the theoretical chemistry, especially 
in QSPR/QSAR research [1]. The oldest topological index, introduced by 
Harold Wiener in 1947, is the ordinary (vertex) version of Wiener index [2], 
which is the sum of all distances between vertices of a graph. There is also 
known an edge versions of Wiener index, based on distance between edges, 
introduced by Iranmanesh et al. in 2008 [3].  

One of the most important topological indices is the Randić connectivity 
index [4], defined as the sum of certain bond contributions calculated from the 
vertex degree of the hydrogen suppressed molecular graphs. 

Inspired by the Randic index in a graph ( , )G V E , with ( )V G being the 
vertex/atom set and ( )E G the edge/bond set, [5,6], Vukicevic and Furtula [7] 
proposed a topological index named the geometric-arithmetic index (shortly 
GA) as  
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where ( )Gd u  denotes the degree of the vertex u  in G. The reader can find 

more information about geometric-arithmetic index in [7-9].  
In [10], the edge version of geometric-arithmetic index (edge GA index) 

was introduced, based on the end-vertex degrees of edges in a line graph of 
G; it is a derived graph such that each vertex of L(G) represents an edge in G 
and two vertices of L(G) are adjacent if and only if their corresponding edges 
share a common endpoint in G 
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where ( ) ( )L Gd e  denotes the vertex degree in L(G) or the degree of edge e  in 

the original graph G. 
We can calculate the edge GA index as  

|E(G)|
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.Also, we have e u vd d d 2   where  e uv E G  . 

Then the number of edges in a line graph is  

 

where     i i i i i iE e e E G , e du ,dv   .  

 

In this paper, we compute this index for product graphs n mP P and 

n mP C anda dendrimer nanostar nD . 

 
2. EDGE GA INDEX OF PRODUCT GRAPHS n mP P  AND n mp C  

At first, we compute the edge GA index for the product graph of two 
paths nP and mP , i.e., n mP P . In Figure 1, the graph of 7 6P P is shown. 

According to this figure, we have  
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Figure 1. The graph of 7 6P P  

 
In Figure 2, the line graph of 7 6P P  is shown. Accordingly, we have 

    n mE L P P 6mn 6 n m 4     . 

 

 
Figure 2. The graph of L( 7 6P P ) 

 
 

In Table 1, the type of edges, their numbers and amount of i  are computed. 
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Table 1. Type of edges, their numbers and amount of i of  

Number of edges i  Type of edges 

4 1 (3,3)

8 
2 12

7
(3,4) 

8 
2 15

8
(3,5) 

4 1 (5,5)
2(n-4)+2(m-4) 1 (4,4)

4(n-3)+4(m-3) 
2 20

9
(4,5) 

6(n-4)+8(m-2) 
2 30

11
(5,6) 

6mn-18n-20m+60 1 (6,6)
 
Then, we have the following Theorem: 
Theorem 1. The edge GA index of n mP P  is 

 
Proof. According to Table 1 and Figure 2, we obtain the result. 
 
Now, we compute the edge GA index of n mP C , with Cm being a cycle of 

size m. In Figure 3, the graph of 6 4P C is indicated. According to the 

following figure, we have    n mE P C n 1 m n.m 2nm m      . 

 

 
Figure 3. The graph of 6 4P C  
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In Figure 4, the line graph of 6 4P C  is shown. Accordingly, we have : 

           n m
1E L P C 3 3 2 2m 3 4 2 2m 2mn 5m 4 4 2
2

6mn 6m

            

   
 

 

Figure 4. The graph of L( 6 4P C ) 

 
In Table 2, the type of edges, their numbers and amount of i  are computed. 

 
 

Table 2. The type of edges, their numbers and amount of i of  

No. of edges i  Type of edges 

2m 1 (4,4) 

4m 
4 5
10

(4,5) 

6m 
2 30

11
(5,6) 

6mn-18m 1 (6,6) 
 
 
Then, we have the following Theorem: 
Theorem 2.The edge GA index of n mP C  is 

 

Proof. According to Table 2 and Figure 4, we obtain the result. 
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3. EDGE GA INDEX OF DENDRIMER NANOSTAR nD  

In Figure 5, the dendritic graph nD is shown. According to this figure, we 

have   n 1
nE D 66.2 45  . 

 

 
(b)n=2                                    (a)n=1 

 
Figure 5. The dendrimer graph nD  

In Figure 6, the line graph of 2D  is shown. According to this figure, we have 

     n 1 n

n 1

1 n 11 (2 2 2). 24 2 12 (2 3 2) 3 2 24 (3 3 2) 12 2 9

2

2

93 66

  



                 

  
 

 

Figure 6. The line graph of 2D  
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In the Table 3, the type of edges, their numbers and amount of i  

for this graph are computed. 
 
 

Table 3. The type of edges, their numbers and amount of i of  

No. of edges i  Types of edges 

n 19 2  1 (2,2) 

n 115 2 12  1 (3,3) 

n 130 2 24   
4 3

7
(3,4) 

n 130 2 24   
2 6

5
(2,3) 

n 19 2 6  1 (4,4) 

 
 
 
Then, we have the following  
 
 
Theorem 3. The edge GA index of nD  is 

 

  n 1
e n

120 3 96 3 48 6GA D 33 12 6 2 18
7 7 5

 
        
   

 
Proof. According to Table 3 and Figure 6, we obtain the result. 
 
 
 
CONCLUSIONS 
 

By using the graph theory techniques, we computed the edge GA 
index for the product graphs n mP P  and n mP C , and a dendrimer nanostar 

nD  and we expressed their exact values. 
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