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ABSTRACT. A novel QSAR approach, based on correlation weighting and 
alignment overa hypermolecule, thatmimics the investigated correlational 
space, was performed on a set of 40 flavonoids, downloaded from the 
PubChem database. The best models describing log P of this set of flavonoids 
were validated in the external test set and in a new version of prediction by 
using similarity clusters.  
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1. INTRODUCTION 
 
Quantitative structure-activity relationships (QSAR) mathematically 

relate descriptors of a molecular structure to a biological activity (or a physico-
chemical property involved in that activity). A structure-activity relationship can 
indicate which features of a given molecule are responsible for its activity, thus 
making possible to synthesize new and more potent compounds with 
enhanced biological activity[1,2].QSAR analysis is based on the assumption 
that the activity of compounds is a function of their structural characteristics [3].  

Molecular similarity was extensively and successfully used in drug 
discovery, often to compare molecules in the absence of other mechanistic 
information [4-6]. Reasons for the increasing popularity of similarity based 
methods include technological advances in high throughput screening and 
synthesis in the last decade and the need of applications of computer based 
methods in compound selection and activity evaluation [7]. Similarity search 
[8,9] and clustering methods [9,10] can be used to classify compounds into 
structural groups [11]and in prediction of biological activities as well [12]. The 
paradigm of similarity-based QSAR approaches was explicitly enounced by 
Johnson and Maggiora[13,14]: “molecules that are structurally similar likely will 
have similar properties”. Thus, when the activity of a set of molecules is 
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unknown, one can predict that activity by taking into account the similarity 
values between the molecules under study and the molecules of a data set 
whose activities are known.  

Studies of similarity [15] in chemical structures can be overtaken by 
using topological indices [16].Among thousands of such topological 
descriptors, the Cluj indices have been defined by Diudea [17,18], as follows. 

A Cluj fragment pjiCJ ,,  collects vertices v lying closer to i than to j, the 

endpoints of a path p(i,j). Such a fragment collects the vertex proximities of i 
against any vertex j, joined by the path p, with the distances measured in the 
subgraphD(G-p), as shown in the following equation: 

 ),(),();( )()(,, vjDviDGVvvCJ pGpGpji       

In graphs containing rings, more than one path could join the pair (i, j), 
thus resulting more than one fragment related to i (with respect to j and a given 
path p). The entries in the Cluj matrix are taken, by definition, as the maximum 
cardinality among all such fragments: 

  pj,i,
p
CJmaxji,[UCJ]       

Indices Ie and Ip are calculated, from the Cluj topological matrices 
UCJe, and UCJp, respectively (see above), as half sum of matrix entries. In the 
above symbols, e refers to edge-calculated matrix while p refers to the path-
calculated ones. 

Correlation weighting[19] was used as a weighting scheme applied to 
local descriptors.Withinthispaper, weusedthecorrelationweighting in theframe 
of a hypermoleculebuiltontheoveral set of structurestaken in study (seebelow). 

The article proposes a new approach called “direct prediction” which 
develops clusters of similar structures aimed to be quasi-congeneric subsets in 
predicting of a biological activity.  

 
 
2. STRUCTURAL DATA 
 
A set of 40 flavonoids were taken from PubChem Database (Table 1) 

and were divided into a training set (30 molecules) and a test set (ten 
molecules), taken randomly. The property chosen for modeling was log P (see 
Table 1), the (calculated) partition coefficient between n-octanoland water, a 
measure of hydrophobicity, involved in the passive transport of a drug 
molecule through cell membrane. 

A hypermolecule (Figure 1) was built up as the union of all structural 
features in all 40 molecules under study. The hypermolecule is considered to 
mimics the investigated statistical hyperspace[20]. 
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Table 1. Flavonoid molecular structures and their log P (from PubChem) 
 

 Structures log P Structures log P 
 Training set     
1 2.8 2 

 

3.5 

3 

 

3.4 4 

 

1.6 

5 2.3 6 

 

3 

7 

 

2.2 8 

 

3.4 

9 

 

3.1 10 

 

3.3 

11 2.9 12 

 

2.8 
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 Structures log P Structures log P 
 Training set     
13 

 

1.7 14 

 

3 

15 3.2 16 

 

3 

17 2.9 18 

 

3.1 

19 3 20 

 

2.7 

21 

 

3.1 22 

 

2.6 

23 2.2 24 

 

2.6 
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 Structures log P Structures log P 
 Training set     
25 

 

2.6 26 

 

3.8 

27 1.5 28 

 

2.3 

29 1.8 30 

 

3.1 

 Test set     
31 2.6 32 

 

1.5 

33 1.7 34 

O

O  

3.2 

35 

 

2.1 36 

 

2.8 
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 Structures log P Structures log P 
 Training set     
37 

 

3.1 38 

 

2.5 

39 2.7 40 

 

2.8 

Figure 1. The hypermolecule comprising the common features of the dataset 
 

3. METHOD 
 

The structures have been optimized in Hyperchem, at PM3 level of 
theory. Topological indices implemented in TOPOCLUJ software [21] have 
been computed for all the structures.A selection of these indices is listed in 
Table 2. 

 
3.1. Alignment over the hypermolecule 
 

By aligning all the molecular structures over the hypermolecule, a 
binary vector (Table 3) was assigned to each molecule: 1-for a common 
feature in a given position of the hypermolecule and 0- for an empty position. 
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Next, the binary vector was weighted by the mass of “hydride” fragments 
composing each molecule. The weighted vector was used in the data-
reduction step and correlation weighting procedure [22]. 
 

Table 2. Topological descriptors computed for the flavonoids in Table 1. 
 

Structure logP SD Detour IEmax. 
1 2.8 0.167 3197 325
2 3.5 0.462 1781 138.5 
3 3.4 0.244 1431 107 
4 1.6 -0.907 2690 249.5 
5 2.3 -0.109 2424 214.5 
6 3 0.204 3480 369.5 
7 2.2 -0.326 2444 232.5
8 3.4 0.244 1800 158.5 
9 3.1 0.323 3203 334 
10 3.3 0.157 2225 218 
11 2.9 0.170 3564 386 
12 2.8 0.399 2422 204.5 
13 1.7 -1.117 2200 192
14 3 0.204 4802 570.5 
15 3.2 0.292 5546 672.5 
16 3 0.204 4180 475.5 
17 2.9 0.245 2936 294.5 
18 3.1 0.327 2936 294.5 
19 3 0.204 3556 388.5
20 2.7 0.072 3205 322.5 
21 2.8 0.148 3170 309 
22 2.6 0.041 3191 314.5 
23 2.2 -0.419 2695 263 
24 2.6 -0.457 1431 107 
25 2.6 0.095 1986 164
26 3.8 0.846 2966 308.5 
27 1.5 -1.396 2212 187.5 
28 2.3 -0.279 1789 138 
29 1.8 -0.977 1990 162 
30 3.1 0.492 3522 367 
31 2.6 -0.429 2420 222
32 1.5 -1.396 2225 194 
33 1.7 -0.791 1779 135.5 
34 3.2 0.069 1254 85 
35 2.1 -0.429 1602 114 
36 2.8 -0.281 1414 103.5 
37 3.1 -0.018 1592 131
38 2.5 -0.544 1789 153 
39 2.7 0.279 1594 114 
40 2.8 0.267 1994 169.5 



ALEXANDRA MARIA HARSA 
 
 

118 

Table 3. The binary vectors, cf. hypermolecule, for the 40 flavonoids. 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
2 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 
3 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
4 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
9 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
10 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
12 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
13 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
14 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 
18 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 
19 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
20 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
21 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 
22 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 
23 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
24 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
25 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 
26 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 
27 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
28 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
29 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
30 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 
31 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 
32 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
33 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 
34 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
35 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 
36 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
37 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
38 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
39 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 
40 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 

 
 

3.2. Data reduction and correlation weighting 
 
In the step of data reduction, all the descriptors with the variance 

Var<30% and those with intercorrelation larger than 0.80 have been discarded. 
Correlation weighting was performed on all the positions in the 

hypermolecule: the correlating coefficients of the statistically significant 
positions of the hypermolecule wereused to multiply the local descriptors, 
actually the mass fragments, thus resulting new weightedvectors ijCD . Next, 
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the local correlating descriptors are summed to give a global descriptor, 

i ijj
SD CD . This new descriptor is a linear combination of the local 

correlating descriptors for the significant positions in the hypermolecule (i.e. 
H1, H3, H7, H8, H10, H11, H12, H19 – Table 4).It correlates with log P as below: 

log 2.783 0.999P SD    
N=40; R2=0.845; s=0.230; F = 206.616 

 
The summative descriptor SD will be used as the basisfor modeling log P. 

 
 

Table 4. Correlation weighted descriptors (see text) 
 

Structure SD H1 H3 H7 H8 H10 H11 H12 H19 
1 0.167 -0.464 0.671 0 0 0.222 -0.119 -0.062 -0.080 
2 0.462 -0.586 0.918 0 0 0.280 -0.151 0 0 
3 0.244 -0.431 0.676 0 0 0 0 0 0 
4 -0.907 1.449 -2.270 0 0 -0.693 0.372 0 0.234 
5 -0.109 0.309 -0.447 0 0 -0.148 0.080 0.044 0.053 
6 0.204 -0.661 1.036 0.149 -0.266 0.342 -0.184 -0.096 -0.116 
7 -0.326 0.521 -0.816 0 0 -0.249 0.134 0 0.084 
8 0.244 -0.431 0.676 0 0 0.000 0 0 0 
9 0.323 -0.871 1.259 0 0 0.416 -0.224 -0.117 -0.141 
10 0.157 -0.277 0.434 0 0 0 0 0 0 
11 0.170 -0.571 0.894 0.129 -0.230 0.296 -0.159 -0.083 -0.106 
12 0.399 -0.428 0.671 0 0 0.236 0 0 -0.080 
13 -1.117 1.238 -1.939 0 0 -0.629 0 0 0.213 
14 0.204 -0.661 1.036 0.149 -0.266 0.342 -0.184 -0.096 -0.116 
15 0.293 -0.946 1.483 0.214 -0.381 0.490 -0.264 -0.138 -0.166 
16 0.204 -0.661 1.036 0.149 -0.266 0.342 -0.184 -0.096 -0.116 
17 0.245 -0.667 0.969 0 0 0.296 -0.159 -0.088 -0.106 
18 0.327 -0.928 1.342 0 0 0.444 -0.239 -0.132 -0.160 
19 0.204 -0.661 1.036 0.149 -0.266 0.342 -0.184 -0.096 -0.116 
20 0.072 -0.233 0.365 0.053 -0.094 0.121 -0.065 -0.034 -0.041 
21 0.148 -0.464 0.727 0.097 -0.172 0.222 -0.119 -0.062 -0.080 
22 0.041 -0.143 0.224 0.032 -0.057 0.074 -0.040 -0.022 -0.027 
23 -0.419 0.464 -0.727 0 0 -0.236 0 0 0.080 
24 -0.457 0.806 -1.263 0 0 0 0 0 0 
25 0.095 -0.155 0.242 0 0 0.074 -0.039 0 -0.027 
26 0.846 -0.969 1.645 0 -0.364 0.534 0 0 0 
27 -1.396 1.547 -2.423 0 0 -0.786 0 0 0.266 
28 -0.279 0.309 -0.485 0 0 -0.157 0 0 0.053 
29 -0.977 1.083 -1.696 0 0 -0.550 0 0 0.186 
30 0.492 -0.856 1.454 0.193 -0.345 0.444 -0.239 0 -0.160 
31 -0.429 0.806 -1.165 0 0 -0.385 0.207 0.108 0 
32 -1.396 1.547 -2.423 0 0 -0.786 0 0 0.266 
33 -0.791 1.238 -1.789 0 0 -0.629 0 0.176 0.213 
34 0.069 -0.122 0.191 0 0 0 0 0 0 
35 -0.429 0.571 -0.969 -0.137 0 0 0 0 0.106 
36 -0.281 0.497 -0.778 0 0 0 0 0 0 
37 -0.019 0.033 -0.051 0 0 0 0 0 0 
38 -0.544 0.961 -1.505 0 0 0 0 0 0 
39 0.279 -0.309 0.485 0 0 0.157 0 0 -0.053 
40 0.267 -0.407 0.638 0 0 0.207 -0.105 0 -0.066 
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4. RESULTS AND DISCUSSION 
 
4.1. QSAR models 
 
The models were performed on the training set (the first 30 structures 

in Table 1) and the best results (in decreasing order of R2) are listed below 
and in Table 5. 

(i) Monovariate regression 
log 2 .739 1.028P SD    

 

(ii) Bivariate regression 
log 3 .011 0 .995 0 .033P SD HOMO      

(iii) Three-variate regression 
maxlog 4.153 0.970 0.002 0.013P SD Detour IE        

(iv) Four-variate regression 
maxlog 4.149 0.969 0.00001 3 0.002 0.013P SD D D Detour IE          

 
 

Table 5. Best models in describing log P in the training set of flavonoids in Table 1 
 

 Descriptors R2 Adjust. R2 St. Error F 

1 SD 0.882 0.878 0.200 209.213 

2 IE max 0.240 0.213 0.508 8.863 

3 Detour 0.213 0.185 0.517 7.592 

4 SD, HOMO 0.885 0.877 0.201 104.767 

5 SD, IP max 0.882 0.874 0.203 101.818 

6 SD,D3D 0.882 0.873 0.204 100.883 

7 SD, Distance 0.882 0.873 0.204 100.930 

8 SD, Detour 0.882 0.873 0.204 100.908 

9 SD, IE max 0.882 0.873 0.203 101.567 

10 SD, Detour, IE max 0.934 0.926 0.156 122.133 

11 SD, Distance, IE max 0.906 0.895 0.185 83.746 

12 SD, IE max, D3D 0.904 0.893 0.188 81.449 

13 SD, C, HOMO 0.888 0.875 0.203 68.442 

14 SD, IE max, IP max 0.887 0.873 0.204 67.791 

15 SD, IP max, HOMO 0.886 0.873 0.205 67.317 

16 SD, Distance, HOMO 0.886 0.873 0.204 67.417 

17 SD,Detour,D3D 0.885 0.872 0.205 67.046 

18 SD, IE max, HOMO 0.885 0.872 0.204 67.267 

19 SD, D3D, Detour, IE max 0.933 0.923 0.159 88.080 

20 SD, IE max, IP max, HOMO 0.892 0.874 0.203 51.509 
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4.2. Model Validation 
 

An essential factor related to QSAR development is represented by the 
model validation. In this respect, Y-randomization and external validation 
Golbraikh-Tropsha procedure are required in order to confirm the statistical 
significance and predictive abilities of the obtained QSAR models [23]. 
 

(a) External Validation 
 

The values log P for the test set of flavonoids were calculated by using 
equation cf. entry 10, Table 5. Data are listed in Table 6 and the monovariate 
correlation: .log 0.125 0.976 log calcP P   ; n=10; R2=0.887; s=0.217; 
F=62.525 is plotted in Figure 2. One can see that Golbraikh-Tropsha criteria 
are fulfilled (R2

pred>0.8) [23]. 
 
Table 6. Calculated values of 
log P for themolecules in the 

test set (Table 1) 
 

Molecules logPcalc. log P 

2 3.195 3.5 

3 3.204 3.4 

12 2.840 2.8 

24 2.524 2.6 

27 1.255 1.5 

34 3.066 3.2 

35 2.333 2.1 

36 2.679 2.8 

37 2.973 3.1 

39 3.035 2.7 
 

 
Figure 2. The plot Log P vs. log P calc.  

for the test set (external validation) 
 
 

(b) Similarity Cluster Validation 
 

Validation can also be performed by calculating log P for the molecules 
in the test set by using clusters of similarity: each of the 10 molecules is the 
leader of its own cluster, selected by 2D similarity among the 30 structures of 
the initial learning set. The values log P calc. were computed by 10 new 
equations (the leader being left out) with the same descriptors as in eq. 10, 
Table5. Data are listed in Table 7 and the monovariate correlation: 

.log 0.002 1.028 log calcP P    ;n=10; R2=0.909; s=0.194; F= 80.033 
is plotted in Figure 3. 
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One can see that the prediction of log P by the similarity clusters is 
better than that obtained in the external validation. This is because the 
similarity procedure provides a set of quasi-congeners, thus making possible 
the basic paradigm of QSAR: similar structures show similar properties. 

 
 

Table 7. Calculated values of  
log P by similarity clusters,  

for themolecules in the test set 

Molecules log P calc. log P 

2 3.132 3.5 

3 3.169 3.4 

12 2.772 2.8 

24 2.585 2.6 

27 1.305 1.5 

34 3.057 3.2 

35 2.268 2.1 

36 2.693 2.8 

37 3.023 3.1 

39 2.955 2.7 
 

 

Figure 3. The plot log P vs. log P calc. by 
similarity clusters 

 
 
CONCLUSIONS 

 
A novel QSAR approach, based on correlation waighting within the 

hypermolecule, considered to mimic the investigated correlational space, was 
performed on a set of 40 flavonoids, downloaded from the PubChem 
database. The set was split into a learning set and a test set, the last one 
being used for the validation of the models, in the so-called „external set 
validation”. Also, the validation was made by a new version of prediction by 
using similarity clusters. The similarity clustering permited realization of „quasi-
congeneric” set of structures, thus providing a better prediction than the 
classical external validation procedure. 
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